Cargando…
Partition of energy for a dissipative quantum oscillator
We reveal a new face of the old clichéd system: a dissipative quantum harmonic oscillator. We formulate and study a quantum counterpart of the energy equipartition theorem satisfied for classical systems. Both mean kinetic energy E(k) and mean potential energy E(p) of the oscillator are expressed as...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6208383/ https://www.ncbi.nlm.nih.gov/pubmed/30382144 http://dx.doi.org/10.1038/s41598-018-34385-9 |
Sumario: | We reveal a new face of the old clichéd system: a dissipative quantum harmonic oscillator. We formulate and study a quantum counterpart of the energy equipartition theorem satisfied for classical systems. Both mean kinetic energy E(k) and mean potential energy E(p) of the oscillator are expressed as E(k) = 〈ε(k)〉 and E(p) = 〈ε(p)〉, where 〈ε(k)〉 and 〈ε(p)〉 are mean kinetic and potential energies per one degree of freedom of the thermostat which consists of harmonic oscillators too. The symbol 〈...〉 denotes two-fold averaging: (i) over the Gibbs canonical state for the thermostat and (ii) over thermostat oscillators frequencies ω which contribute to E(k) and E(p) according to the probability distribution [Formula: see text] and [Formula: see text] , respectively. The role of the system-thermostat coupling strength and the memory time is analysed for the exponentially decaying memory function (Drude dissipation mechanism) and the algebraically decaying damping kernel. |
---|