Cargando…
Machine Learning Reveals Missing Edges and Putative Interaction Mechanisms in Microbial Ecosystem Networks
Microbes affect each other’s growth in multiple, often elusive, ways. The ensuing interdependencies form complex networks, believed to reflect taxonomic composition as well as community-level functional properties and dynamics. The elucidation of these networks is often pursued by measuring pairwise...
Autores principales: | DiMucci, Demetrius, Kon, Mark, Segrè, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6208640/ https://www.ncbi.nlm.nih.gov/pubmed/30417106 http://dx.doi.org/10.1128/mSystems.00181-18 |
Ejemplares similares
-
BowSaw: Inferring Higher-Order Trait Interactions Associated With Complex Biological Phenotypes
por: DiMucci, Demetrius, et al.
Publicado: (2021) -
Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems
por: Pacheco, Alan R., et al.
Publicado: (2019) -
Scrutinizing metal–ligand covalency and redox non-innocence via nitrogen K-edge X-ray absorption spectroscopy
por: Lukens, James T., et al.
Publicado: (2019) -
Environments that Induce Synthetic Microbial Ecosystems
por: Klitgord, Niels, et al.
Publicado: (2010) -
A new two-stage method for revealing missing parts of edges in protein-protein interaction networks
por: Zhang, Wei, et al.
Publicado: (2017)