Cargando…

Drosophila Hsp67Bc hot-spot variants alter muscle structure and function

The Drosophila Hsp67Bc gene encodes a protein belonging to the small heat-shock protein (sHSP) family, identified as the nearest functional ortholog of human HSPB8. The most prominent activity of sHSPs is preventing the irreversible aggregation of various non-native polypeptides. Moreover, they are...

Descripción completa

Detalles Bibliográficos
Autores principales: Jabłońska, Jadwiga, Dubińska-Magiera, Magda, Jagla, Teresa, Jagla, Krzysztof, Daczewska, Małgorzata
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6208764/
https://www.ncbi.nlm.nih.gov/pubmed/30032358
http://dx.doi.org/10.1007/s00018-018-2875-z
Descripción
Sumario:The Drosophila Hsp67Bc gene encodes a protein belonging to the small heat-shock protein (sHSP) family, identified as the nearest functional ortholog of human HSPB8. The most prominent activity of sHSPs is preventing the irreversible aggregation of various non-native polypeptides. Moreover, they are involved in processes such as development, aging, maintenance of the cytoskeletal architecture and autophagy. In larval muscles Hsp67Bc localizes to the Z- and A-bands, which suggests its role as part of the conserved chaperone complex required for Z-disk maintenance. In addition, Hsp67Bc is present at neuromuscular junctions (NMJs), which implies its involvement in the maintenance of NMJ structure. Here, we report the effects of muscle-target overexpression of Drosophila Hsp67Bc hot-spot variants Hsp67BcR126E and Hsp67BcR126N mimicking pathogenic variants of human HSPB8. Depending on the substitutions, we observed a different impact on muscle structure and performance. Expression of Hsp67BcR126E affects larval motility, which may be caused by impairment of mitochondrial respiratory function and/or by NMJ abnormalities manifested by a decrease in the number of synaptic boutons. In contrast, Hsp67BcR126N appears to be an aggregate-prone variant, as reflected in excessive accumulation of mutant proteins and the formation of large aggregates with a lesser impact on muscle structure and performance compared to the Hsp67BcR126E variant.