Cargando…

Microenvironmental derived factors modulating dendritic cell function and vaccine efficacy: the effect of prostanoid receptor and nuclear receptor ligands

Dendritic cells (DCs) are widely used in DC-based immunotherapies because of their capacity to steer immune responses. So far treatment success is limited and more functional knowledge on how DCs initiate and stably drive specific responses is needed. Many intrinsic and extrinsic factors contribute...

Descripción completa

Detalles Bibliográficos
Autores principales: Raaijmakers, Tonke K., Ansems, Marleen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6208817/
https://www.ncbi.nlm.nih.gov/pubmed/29998375
http://dx.doi.org/10.1007/s00262-018-2205-1
Descripción
Sumario:Dendritic cells (DCs) are widely used in DC-based immunotherapies because of their capacity to steer immune responses. So far treatment success is limited and more functional knowledge on how DCs initiate and stably drive specific responses is needed. Many intrinsic and extrinsic factors contribute to how DCs skew the immune response towards immunity or tolerance. The origin and type of DC, its maturation status, but also factors they encounter in the in vitro or in vivo microenvironment they reside in during differentiation and maturation affect this balance. Treatment success of DC vaccines will, therefore, also depend on the presence of these factors during the process of vaccination. Identification and further knowledge of natural and pharmacological compounds that modulate DC differentiation and function towards a specific response may help to improve current DC-based immunotherapies. This review focuses on factors that could improve the efficacy of DC vaccines in (pre-)clinical studies to enhance DC-based immunotherapy, with a particular emphasis on compounds acting on prostanoid or nuclear receptor families.