Cargando…
A Pareto approach to resolve the conflict between information gain and experimental costs: Multiple-criteria design of carbon labeling experiments
Science revolves around the best way of conducting an experiment to obtain insightful results. Experiments with maximal information content can be found by computational experimental design (ED) strategies that identify optimal conditions under which to perform the experiment. Several criteria have...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6209137/ https://www.ncbi.nlm.nih.gov/pubmed/30379837 http://dx.doi.org/10.1371/journal.pcbi.1006533 |
_version_ | 1783366847470501888 |
---|---|
author | Nöh, Katharina Niedenführ, Sebastian Beyß, Martin Wiechert, Wolfgang |
author_facet | Nöh, Katharina Niedenführ, Sebastian Beyß, Martin Wiechert, Wolfgang |
author_sort | Nöh, Katharina |
collection | PubMed |
description | Science revolves around the best way of conducting an experiment to obtain insightful results. Experiments with maximal information content can be found by computational experimental design (ED) strategies that identify optimal conditions under which to perform the experiment. Several criteria have been proposed to measure the information content, each emphasizing different aspects of the design goal, i.e., reduction of uncertainty. Where experiments are complex or expensive, second sight is at the budget governing the achievable amount of information. In this context, the design objectives cost and information gain are often incommensurable, though dependent. By casting the ED task into a multiple-criteria optimization problem, a set of trade-off designs is derived that approximates the Pareto-frontier which is instrumental for exploring preferable designs. In this work, we present a computational methodology for multiple-criteria ED of information-rich experiments that accounts for virtually any set of design criteria. The methodology is implemented for the case of (13)C metabolic flux analysis (MFA), which is arguably the most expensive type among the ‘omics’ technologies, featuring dozens of design parameters (tracer composition, analytical platform, measurement selection etc.). Supported by an innovative visualization scheme, we demonstrate with two realistic showcases that the use of multiple criteria reveals deep insights into the conflicting interplay between information carriers and cost factors that are not amendable to single-objective ED. For instance, tandem mass spectrometry turns out as best-in-class with respect to information gain, while it delivers this information quality cheaper than the other, routinely applied analytical technologies. Therewith, our Pareto approach to ED offers the investigator great flexibilities in the conception phase of a study to balance costs and benefits. |
format | Online Article Text |
id | pubmed-6209137 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-62091372018-11-19 A Pareto approach to resolve the conflict between information gain and experimental costs: Multiple-criteria design of carbon labeling experiments Nöh, Katharina Niedenführ, Sebastian Beyß, Martin Wiechert, Wolfgang PLoS Comput Biol Research Article Science revolves around the best way of conducting an experiment to obtain insightful results. Experiments with maximal information content can be found by computational experimental design (ED) strategies that identify optimal conditions under which to perform the experiment. Several criteria have been proposed to measure the information content, each emphasizing different aspects of the design goal, i.e., reduction of uncertainty. Where experiments are complex or expensive, second sight is at the budget governing the achievable amount of information. In this context, the design objectives cost and information gain are often incommensurable, though dependent. By casting the ED task into a multiple-criteria optimization problem, a set of trade-off designs is derived that approximates the Pareto-frontier which is instrumental for exploring preferable designs. In this work, we present a computational methodology for multiple-criteria ED of information-rich experiments that accounts for virtually any set of design criteria. The methodology is implemented for the case of (13)C metabolic flux analysis (MFA), which is arguably the most expensive type among the ‘omics’ technologies, featuring dozens of design parameters (tracer composition, analytical platform, measurement selection etc.). Supported by an innovative visualization scheme, we demonstrate with two realistic showcases that the use of multiple criteria reveals deep insights into the conflicting interplay between information carriers and cost factors that are not amendable to single-objective ED. For instance, tandem mass spectrometry turns out as best-in-class with respect to information gain, while it delivers this information quality cheaper than the other, routinely applied analytical technologies. Therewith, our Pareto approach to ED offers the investigator great flexibilities in the conception phase of a study to balance costs and benefits. Public Library of Science 2018-10-31 /pmc/articles/PMC6209137/ /pubmed/30379837 http://dx.doi.org/10.1371/journal.pcbi.1006533 Text en © 2018 Nöh et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Nöh, Katharina Niedenführ, Sebastian Beyß, Martin Wiechert, Wolfgang A Pareto approach to resolve the conflict between information gain and experimental costs: Multiple-criteria design of carbon labeling experiments |
title | A Pareto approach to resolve the conflict between information gain and experimental costs: Multiple-criteria design of carbon labeling experiments |
title_full | A Pareto approach to resolve the conflict between information gain and experimental costs: Multiple-criteria design of carbon labeling experiments |
title_fullStr | A Pareto approach to resolve the conflict between information gain and experimental costs: Multiple-criteria design of carbon labeling experiments |
title_full_unstemmed | A Pareto approach to resolve the conflict between information gain and experimental costs: Multiple-criteria design of carbon labeling experiments |
title_short | A Pareto approach to resolve the conflict between information gain and experimental costs: Multiple-criteria design of carbon labeling experiments |
title_sort | pareto approach to resolve the conflict between information gain and experimental costs: multiple-criteria design of carbon labeling experiments |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6209137/ https://www.ncbi.nlm.nih.gov/pubmed/30379837 http://dx.doi.org/10.1371/journal.pcbi.1006533 |
work_keys_str_mv | AT nohkatharina aparetoapproachtoresolvetheconflictbetweeninformationgainandexperimentalcostsmultiplecriteriadesignofcarbonlabelingexperiments AT niedenfuhrsebastian aparetoapproachtoresolvetheconflictbetweeninformationgainandexperimentalcostsmultiplecriteriadesignofcarbonlabelingexperiments AT beyßmartin aparetoapproachtoresolvetheconflictbetweeninformationgainandexperimentalcostsmultiplecriteriadesignofcarbonlabelingexperiments AT wiechertwolfgang aparetoapproachtoresolvetheconflictbetweeninformationgainandexperimentalcostsmultiplecriteriadesignofcarbonlabelingexperiments AT nohkatharina paretoapproachtoresolvetheconflictbetweeninformationgainandexperimentalcostsmultiplecriteriadesignofcarbonlabelingexperiments AT niedenfuhrsebastian paretoapproachtoresolvetheconflictbetweeninformationgainandexperimentalcostsmultiplecriteriadesignofcarbonlabelingexperiments AT beyßmartin paretoapproachtoresolvetheconflictbetweeninformationgainandexperimentalcostsmultiplecriteriadesignofcarbonlabelingexperiments AT wiechertwolfgang paretoapproachtoresolvetheconflictbetweeninformationgainandexperimentalcostsmultiplecriteriadesignofcarbonlabelingexperiments |