Cargando…
Multi-appearance segmentation and extended 0-1 programming for dense small object tracking
Aiming to address dense small object tracking, we propose an image-to-trajectory framework including tracking and detection, where Track-Oriented Multiple Hypothesis Tracking(TOMHT) is revised for tracking. Unlike common cases of multi-object tracking, merged detections and the greater number of obj...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6209235/ https://www.ncbi.nlm.nih.gov/pubmed/30379889 http://dx.doi.org/10.1371/journal.pone.0206168 |
_version_ | 1783366870247669760 |
---|---|
author | Chen, Longtao Ren, Mingwu |
author_facet | Chen, Longtao Ren, Mingwu |
author_sort | Chen, Longtao |
collection | PubMed |
description | Aiming to address dense small object tracking, we propose an image-to-trajectory framework including tracking and detection, where Track-Oriented Multiple Hypothesis Tracking(TOMHT) is revised for tracking. Unlike common cases of multi-object tracking, merged detections and the greater number of objects make dense small object tracking a more challenging problem. Firstly, we handle frequent merged detections through the aspects of detection and hypothesis selection. To tackle merged detection, we revise Local Contrast Method(LCM) and propose a multi-appearance variant, which exploits tree-like topological information and realizes one threshold for one object. Meanwhile, one-to-many constraint is employed via the proposed extended 0-1 programming, which enables hypothesis selection to handle track exclusions caused by merged detections. Secondly, to alleviate the high complexity caused by dense objects, we consider batch optimization and more rigorous and precise pruning technologies. Specifically, we propose autocorrelation based motion score test and two-stage hypotheses pruning. Experimental results are presented to verify the strength of our methods, which indicates speed and performance advantages of our tracker. |
format | Online Article Text |
id | pubmed-6209235 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-62092352018-11-19 Multi-appearance segmentation and extended 0-1 programming for dense small object tracking Chen, Longtao Ren, Mingwu PLoS One Research Article Aiming to address dense small object tracking, we propose an image-to-trajectory framework including tracking and detection, where Track-Oriented Multiple Hypothesis Tracking(TOMHT) is revised for tracking. Unlike common cases of multi-object tracking, merged detections and the greater number of objects make dense small object tracking a more challenging problem. Firstly, we handle frequent merged detections through the aspects of detection and hypothesis selection. To tackle merged detection, we revise Local Contrast Method(LCM) and propose a multi-appearance variant, which exploits tree-like topological information and realizes one threshold for one object. Meanwhile, one-to-many constraint is employed via the proposed extended 0-1 programming, which enables hypothesis selection to handle track exclusions caused by merged detections. Secondly, to alleviate the high complexity caused by dense objects, we consider batch optimization and more rigorous and precise pruning technologies. Specifically, we propose autocorrelation based motion score test and two-stage hypotheses pruning. Experimental results are presented to verify the strength of our methods, which indicates speed and performance advantages of our tracker. Public Library of Science 2018-10-31 /pmc/articles/PMC6209235/ /pubmed/30379889 http://dx.doi.org/10.1371/journal.pone.0206168 Text en © 2018 Chen, Ren http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Chen, Longtao Ren, Mingwu Multi-appearance segmentation and extended 0-1 programming for dense small object tracking |
title | Multi-appearance segmentation and extended 0-1 programming for dense small object tracking |
title_full | Multi-appearance segmentation and extended 0-1 programming for dense small object tracking |
title_fullStr | Multi-appearance segmentation and extended 0-1 programming for dense small object tracking |
title_full_unstemmed | Multi-appearance segmentation and extended 0-1 programming for dense small object tracking |
title_short | Multi-appearance segmentation and extended 0-1 programming for dense small object tracking |
title_sort | multi-appearance segmentation and extended 0-1 programming for dense small object tracking |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6209235/ https://www.ncbi.nlm.nih.gov/pubmed/30379889 http://dx.doi.org/10.1371/journal.pone.0206168 |
work_keys_str_mv | AT chenlongtao multiappearancesegmentationandextended01programmingfordensesmallobjecttracking AT renmingwu multiappearancesegmentationandextended01programmingfordensesmallobjecttracking |