Cargando…

Hydrogel-Nanoparticles Composite System for Controlled Drug Delivery

Biodegradable poly(ethylene glycol)-block-poly(-lactic acid) (PEG-b-PLA) nanoparticles (NPs) were prepared by nanoprecipitation with controlled dimension and with different electric charges, as monitored by dynamic light scattering (DLS). Then NPs were loaded within hydrogels (HG) developed for biom...

Descripción completa

Detalles Bibliográficos
Autores principales: Mauri, Emanuele, Negri, Anna, Rebellato, Erica, Masi, Maurizio, Perale, Giuseppe, Rossi, Filippo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6209253/
https://www.ncbi.nlm.nih.gov/pubmed/30674850
http://dx.doi.org/10.3390/gels4030074
Descripción
Sumario:Biodegradable poly(ethylene glycol)-block-poly(-lactic acid) (PEG-b-PLA) nanoparticles (NPs) were prepared by nanoprecipitation with controlled dimension and with different electric charges, as monitored by dynamic light scattering (DLS). Then NPs were loaded within hydrogels (HG) developed for biomedical applications in the central nervous system, with different pore sizes (30 and 90 nm). The characteristics of the resulting composite hydrogel-NPs system were firstly studied in terms of ability to control the release of small steric hindrance drug mimetic. Then, diffusion-controlled release of different charged NPs from different entangled hydrogels was studied in vitro and correlated with NPs electric charges and hydrogel mean mesh size. These studies showed different trends, that depend on NPs superficial charge and HG mesh size. Release experiments and diffusion studies, then rationalized by mathematical modeling, allowed us to build different drug delivery devices that can satisfy different medical needs.