Cargando…
Biochemical and Functional Changes in the Eye As a Manifestation of Systemic Degeneration of the Nervous System in Parkinsonism
Parkinson’s disease (PD) is a systemic neurodegenerative condition caused by the death of dopaminergic neurons of the nigrostriatal system of the brain. This disease is diagnosed after most neurons have already been lost, which explains the low efficiency of treatment. Hope for increasing treatment...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
A.I. Gordeyev
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6209403/ https://www.ncbi.nlm.nih.gov/pubmed/30397528 |
Sumario: | Parkinson’s disease (PD) is a systemic neurodegenerative condition caused by the death of dopaminergic neurons of the nigrostriatal system of the brain. This disease is diagnosed after most neurons have already been lost, which explains the low efficiency of treatment. Hope for increasing treatment efficiency rests in the development of new strategies for early diagnosis of PD based on a search for peripheral markers that appear as early changes in non-motor functions. Since impairment of the visual function is one of the manifestations of PD, the purpose of our work was to identify biochemical and physiological changes in a mouse’s eye and eyelid in models of preclinical (presymptomatic) and clinical (symptomatic) stages of PD. We found that the norepinephrine, dopamine, and serotonin levels in the mouse eye reduced not only in the model of the early clinical stage, but also in the model of preclinical stage, an indication that pathological changes in the monoaminergic systems of the brain had affected the eye even before the motor disorders emerged. Moreover, in both models of PD, mice had increased intraocular pressure, indicating the development of both metabolic and functional impairments, which can be used as diagnostic markers. Unlike in the eye, the serotonin level in the eyelid was increased in mice at both parkinsonism stages and in presymptomatic mice to a much higher extent than in symptomatic ones. Given that serotonin is involved in the regulation of lacrimal glands of the eyelid, an increase in its level in parkinsonian mice should alter the composition of tear fluid, which could serve as a diagnostic marker of early stage of PD. Thus, the changes in the metabolism of monoamines in the eye and eyelid observed in mice at the early stage of parkinsonism are accompanied by changes in the function of these structures and, therefore, can be used as diagnostic markers of the early stage of PD. |
---|