Cargando…
Deep Learning With Spiking Neurons: Opportunities and Challenges
Spiking neural networks (SNNs) are inspired by information processing in biology, where sparse and asynchronous binary signals are communicated and processed in a massively parallel fashion. SNNs on neuromorphic hardware exhibit favorable properties such as low power consumption, fast inference, and...
Autores principales: | Pfeiffer, Michael, Pfeil, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6209684/ https://www.ncbi.nlm.nih.gov/pubmed/30410432 http://dx.doi.org/10.3389/fnins.2018.00774 |
Ejemplares similares
-
Efficient Processing of Spatio-Temporal Data Streams With Spiking Neural Networks
por: Kugele, Alexander, et al.
Publicado: (2020) -
Supervised Learning in All FeFET-Based Spiking Neural Network: Opportunities and Challenges
por: Dutta, Sourav, et al.
Publicado: (2020) -
Back-Propagation Learning in Deep Spike-By-Spike Networks
por: Rotermund, David, et al.
Publicado: (2019) -
Training Deep Spiking Neural Networks Using Backpropagation
por: Lee, Jun Haeng, et al.
Publicado: (2016) -
A Delay Learning Algorithm Based on Spike Train Kernels for Spiking Neurons
por: Wang, Xiangwen, et al.
Publicado: (2019)