Cargando…
Probabilistic Damage Detection of a Steel Truss Bridge Model by Optimally Designed Bayesian Neural Network
Excellent pattern matching capability makes artificial neural networks (ANNs) a very promising approach for vibration-based structural health monitoring (SHM). The proper design of the network architecture with the suitable complexity is vital to the ANN-based structural damage detection. In additio...
Autores principales: | Yin, Tao, Zhu, Hong-ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6209863/ https://www.ncbi.nlm.nih.gov/pubmed/30304848 http://dx.doi.org/10.3390/s18103371 |
Ejemplares similares
-
Structural Damage Localization and Quantification Based on a CEEMDAN Hilbert Transform Neural Network Approach: A Model Steel Truss Bridge Case Study
por: Mousavi, Asma Alsadat, et al.
Publicado: (2020) -
Mechanical Behavior and Failure Mode of Steel–Concrete Connection Joints in a Hybrid Truss Bridge: Experimental Investigation
por: Tan, Yingliang, et al.
Publicado: (2020) -
An Optimal Strain Gauge Layout Design for the Measurement of Truss Structures
por: Kyung, JungHyun, et al.
Publicado: (2023) -
Scalable probabilistic truss decomposition using central limit theorem and H-index
por: Esfahani, Fatemeh, et al.
Publicado: (2022) -
Probabilistic occupancy forecasting for risk-aware optimal ventilation through autoencoder Bayesian deep neural networks
por: Zhuang, Chaoqun, et al.
Publicado: (2022)