Cargando…

Electromagnetic–Acoustic Sensing for Biomedical Applications

This paper reviews the theories and applications of electromagnetic–acoustic (EMA) techniques (covering light-induced photoacoustic, microwave-induced thermoacoustic, magnetic-modulated thermoacoustic, and X-ray-induced thermoacoustic) belonging to the more general area of electromagnetic (EM) hybri...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Siyu, Zhang, Ruochong, Zheng, Zesheng, Zheng, Yuanjin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210000/
https://www.ncbi.nlm.nih.gov/pubmed/30248969
http://dx.doi.org/10.3390/s18103203
Descripción
Sumario:This paper reviews the theories and applications of electromagnetic–acoustic (EMA) techniques (covering light-induced photoacoustic, microwave-induced thermoacoustic, magnetic-modulated thermoacoustic, and X-ray-induced thermoacoustic) belonging to the more general area of electromagnetic (EM) hybrid techniques. The theories cover excitation of high-power EM field (laser, microwave, magnetic field, and X-ray) and subsequent acoustic wave generation. The applications of EMA methods include structural imaging, blood flowmetry, thermometry, dosimetry for radiation therapy, hemoglobin oxygen saturation (SO(2)) sensing, fingerprint imaging and sensing, glucose sensing, pH sensing, etc. Several other EM-related acoustic methods, including magnetoacoustic, magnetomotive ultrasound, and magnetomotive photoacoustic are also described. It is believed that EMA has great potential in both pre-clinical research and medical practice.