Cargando…
Multivariate-Time-Series-Driven Real-time Anomaly Detection Based on Bayesian Network
Anomaly detection is an important research direction, which takes the real-time information system from different sensors and conditional information sources into consideration. Based on this, we can detect possible anomalies expected of the devices and components. One of the challenges is anomaly d...
Autores principales: | Ding, Nan, Gao, Huanbo, Bu, Hongyu, Ma, Haoxuan, Si, Huaiwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210001/ https://www.ncbi.nlm.nih.gov/pubmed/30304817 http://dx.doi.org/10.3390/s18103367 |
Ejemplares similares
-
GTAD: Graph and Temporal Neural Network for Multivariate Time Series Anomaly Detection
por: Guan, Siwei, et al.
Publicado: (2022) -
Disentangled Dynamic Deviation Transformer Networks for Multivariate Time Series Anomaly Detection
por: Wang, Chunzhi, et al.
Publicado: (2023) -
Masked Graph Neural Networks for Unsupervised Anomaly Detection in Multivariate Time Series
por: Xu, Kang, et al.
Publicado: (2023) -
Bayesian time-aligned factor analysis of paired multivariate time series
por: Roy, Arkaprava, et al.
Publicado: (2021) -
Ensemble Neuroevolution-Based Approach for Multivariate Time Series Anomaly Detection
por: Faber, Kamil, et al.
Publicado: (2021)