Cargando…

Intracellular Delivery of Gold Nanocolloids Promoted by a Chemically Conjugated Anticancer Peptide

[Image: see text] We report on the ability of a chemically synthesized anticancer peptide, SVS-1, to promote the rapid uptake of gold nanorods (AuNRs) and gold nanoparticles (AuNPs) by live HeLa cells. For this, AuNPs and AuNRs, surface ligated with a multicoordinating polymer that presents several...

Descripción completa

Detalles Bibliográficos
Autores principales: Kapur, Anshika, Medina, Scott H., Wang, Wentao, Palui, Goutam, Schneider, Joel P., Mattoussi, Hedi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210078/
https://www.ncbi.nlm.nih.gov/pubmed/30411018
http://dx.doi.org/10.1021/acsomega.8b02276
Descripción
Sumario:[Image: see text] We report on the ability of a chemically synthesized anticancer peptide, SVS-1, to promote the rapid uptake of gold nanorods (AuNRs) and gold nanoparticles (AuNPs) by live HeLa cells. For this, AuNPs and AuNRs, surface ligated with a multicoordinating polymer that presents several amine groups per ligand, are simultaneously reacted with SVS-1 and Texas-Red dye; the latter allows fluorescence visualization of the nanocrystals. Using epifluorescence microscopy, we find that incubation of the SVS-1-conjugated AuNPs and AuNRs with a model cancer cell line yields extended staining throughout the cell cytoplasm, even at low conjugate concentrations (∼0.1 nM). Furthermore, uptake is specific to the SVS-1-conjugated nanocrystals. Additional endocytosis inhibition experiments, where cells have been incubated with the conjugates at 4 °C or in the presence of endocytic inhibitors, show that significant levels of conjugate uptake persist. These results combined indicate an uptake mechanism that does not necessarily rely on endocytosis, a promising finding with implications for the use of nanomaterials in the field of biology and nanomedicine.