Cargando…
Object Detection in Very High-Resolution Aerial Images Using One-Stage Densely Connected Feature Pyramid Network
Object detection in very high-resolution (VHR) aerial images is an essential step for a wide range of applications such as military applications, urban planning, and environmental management. Still, it is a challenging task due to the different scales and appearances of the objects. On the other han...
Autores principales: | Tayara, Hilal, Chong, Kil To |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210269/ https://www.ncbi.nlm.nih.gov/pubmed/30301221 http://dx.doi.org/10.3390/s18103341 |
Ejemplares similares
-
High-Resolution Aerial Imagery Semantic Labeling with Dense Pyramid Network
por: Pan, Xuran, et al.
Publicado: (2018) -
DCNN-4mC: Densely connected neural network based N4-methylcytosine site prediction in multiple species
por: Rehman, Mobeen Ur, et al.
Publicado: (2021) -
Adaptively Dense Feature Pyramid Network for Object Detection
por: PAN, HAODONG, et al.
Publicado: (2019) -
Identification of miRNA-Small Molecule Associations by Continuous Feature Representation Using Auto-Encoders
por: Abdelbaky, Ibrahim, et al.
Publicado: (2021) -
ProB-Site: Protein Binding Site Prediction Using Local Features
por: Khan, Sharzil Haris, et al.
Publicado: (2022)