Cargando…
Support Vector Machine Optimized by Genetic Algorithm for Data Analysis of Near-Infrared Spectroscopy Sensors
Near-infrared (NIR) spectral sensors deliver the spectral response of the light absorbed by materials for quantification, qualification or identification. Spectral analysis technology based on the NIR sensor has been a useful tool for complex information processing and high precision identification...
Autores principales: | Wang, Di, Xie, Lin, Yang, Simon X., Tian, Fengchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210373/ https://www.ncbi.nlm.nih.gov/pubmed/30257420 http://dx.doi.org/10.3390/s18103222 |
Ejemplares similares
-
Improved Deep CNN with Parameter Initialization for Data Analysis of Near-Infrared Spectroscopy Sensors
por: Wang, Di, et al.
Publicado: (2020) -
Automatic depression diagnosis through hybrid EEG and near-infrared spectroscopy features using support vector machine
por: Yi, Li, et al.
Publicado: (2023) -
Estimation of Andrographolides and Gradation of Andrographis paniculata Leaves Using Near Infrared Spectroscopy Together With Support Vector Machine
por: Sing, Dilip, et al.
Publicado: (2021) -
Detection of Glutamic Acid in Oilseed Rape Leaves Using Near Infrared Spectroscopy and the Least Squares-Support Vector Machine
por: Bao, Yidan, et al.
Publicado: (2012) -
Support vector machines: optimization based theory, algorithms, and extensions
por: Deng, Naiyang, et al.
Publicado: (2013)