Cargando…

Role of Hydrogen Sulfide in NRF2- and Sirtuin-Dependent Maintenance of Cellular Redox Balance

Hydrogen sulfide (H(2)S) has arisen as a critical gasotransmitter signaling molecule modulating cellular biological events related to health and diseases in heart, brain, liver, vascular systems and immune response. Three enzymes mediate the endogenous production of H(2)S: cystathione β-synthase (CB...

Descripción completa

Detalles Bibliográficos
Autores principales: Corsello, Tiziana, Komaravelli, Narayana, Casola, Antonella
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210431/
https://www.ncbi.nlm.nih.gov/pubmed/30274149
http://dx.doi.org/10.3390/antiox7100129
Descripción
Sumario:Hydrogen sulfide (H(2)S) has arisen as a critical gasotransmitter signaling molecule modulating cellular biological events related to health and diseases in heart, brain, liver, vascular systems and immune response. Three enzymes mediate the endogenous production of H(2)S: cystathione β-synthase (CBS), cystathione γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). CBS and CSE localizations are organ-specific. 3-MST is a mitochondrial and cytosolic enzyme. The generation of H(2)S is firmly regulated by these enzymes under normal physiological conditions. Recent studies have highlighted the role of H(2)S in cellular redox homeostasis, as it displays significant antioxidant properties. H(2)S exerts antioxidant effects through several mechanisms, such as quenching reactive oxygen species (ROS) and reactive nitrogen species (RNS), by modulating cellular levels of glutathione (GSH) and thioredoxin (Trx-1) or increasing expression of antioxidant enzymes (AOE), by activating the transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2). H(2)S also influences the activity of the histone deacetylase protein family of sirtuins, which plays an important role in inhibiting oxidative stress in cardiomyocytes and during the aging process by modulating AOE gene expression. This review focuses on the role of H(2)S in NRF2 and sirtuin signaling pathways as they are related to cellular redox homeostasis.