Cargando…

Side-Slither Data-Based Vignetting Correction of High-Resolution Spaceborne Camera with Optical Focal Plane Assembly

Optical focal plane assemblies are increasingly being used in high-resolution optical satellite systems to enhance the width of the image using linear push-broom imaging. With this system, vignetting occurs in the area of overlap, affecting image quality. In this paper, using the characteristics of...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Chaochao, Pan, Jun, Wang, Mi, Zhu, Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210448/
https://www.ncbi.nlm.nih.gov/pubmed/30314308
http://dx.doi.org/10.3390/s18103402
Descripción
Sumario:Optical focal plane assemblies are increasingly being used in high-resolution optical satellite systems to enhance the width of the image using linear push-broom imaging. With this system, vignetting occurs in the area of overlap, affecting image quality. In this paper, using the characteristics of the side-slither data, we propose side-slither data-based vignetting correction of a high-resolution spaceborne camera with an optical focal plane assembly. First, the raw side-slither data standardization is used to ensure that each row has the same features. Then, with the spatial correlation of a gray-level co-occurrence matrix, the gray-level co-occurrence matrix is proposed to identify the uniform regions, to extract the sample points. Finally, due to the characteristics of compatible linear response and non-linear response, the power-law model was used to fit, and the Levenberg–Marquardt algorithm was used to fit the model. In the experiment, polynomial fitting, laboratory coefficients and on-orbit coefficients were used for comparison with the proposed method. The side-slither data can be treated as a uniform scene due to their characteristics, and the side-slither image that was corrected using the proposed method showed less than 1% change in mean value, a root-mean-square deviation value better than 0.1%, and the average streaking metrics were superior to 0.02. The results showed that the proposed method performs significantly better in the vignetting area.