Cargando…
Short-Term PM2.5 Forecasting Using Exponential Smoothing Method: A Comparative Analysis
Air pollution is a global problem and can be perceived as a modern-day curse. One way of dealing with it is by finding economical ways to monitor and forecast air quality. Accurately monitoring and forecasting fine particulate matter (PM2.5) concentrations is a challenging prediction task but Intern...
Autores principales: | Mahajan, Sachit, Chen, Ling-Jyh, Tsai, Tzu-Chieh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210558/ https://www.ncbi.nlm.nih.gov/pubmed/30257448 http://dx.doi.org/10.3390/s18103223 |
Ejemplares similares
-
Forecasting with exponential smoothing: the state space approach
por: Hyndman, Rob J, et al.
Publicado: (2008) -
PM(2.5) Forecast in Korea using the Long Short-Term Memory (LSTM) Model
por: Ho, Chang-Hoi, et al.
Publicado: (2022) -
Forecasting outbreak of COVID-19 in Turkey; Comparison of Box–Jenkins, Brown’s exponential smoothing and long short-term memory models
por: Guleryuz, Didem
Publicado: (2021) -
Hybrid of deep learning and exponential smoothing for enhancing crime forecasting accuracy
por: Butt, Umair Muneer, et al.
Publicado: (2022) -
Comparison of exponential smoothing methods in forecasting global prices of main metals
por: Kahraman, Esma, et al.
Publicado: (2022)