Cargando…
Terahertz Imaging of Thin Film Layers with Matched Field Processing
Terahertz (THz) time of flight (TOF) tomography systems offer a new measurement modality for non-destructive evaluation (NDE) of the subsurface layers of protective coatings and/or laminated composite materials for industrial, security and biomedical applications. However, for thin film samples, the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210592/ https://www.ncbi.nlm.nih.gov/pubmed/30347738 http://dx.doi.org/10.3390/s18103547 |
Sumario: | Terahertz (THz) time of flight (TOF) tomography systems offer a new measurement modality for non-destructive evaluation (NDE) of the subsurface layers of protective coatings and/or laminated composite materials for industrial, security and biomedical applications. However, for thin film samples, the time-of-flight within a layer is less than the duration of the THz pulse and consequently there is insufficient range resolution for NDE of the sample under test. In this paper, matched field processing (MFP) techniques are applied to thickness estimation in THz TOF tomography applications, and these methods are demonstrated by using measured THz spectra to estimate the the thicknesses of a thin air gap and its depth below the surface. MFP methods have been developed over several decades in the underwater acoustics community for model-based inversion of geo-acoustic parameters. It is expected that this research will provide an important link for THz researchers to access and apply the robust methods available in the MFP literature. |
---|