Cargando…

Reputation-Aware Recruitment and Credible Reporting for Platform Utility in Mobile Crowd Sensing with Smart Devices in IoT

The Internet of things (IoT) comprises a huge collection of electronic devices connected to the Internet to ensure the dependable exchange of sensing information. It involves mobile workers (MWs) who perform various activities to support enormous online services and applications. In mobile crowd sen...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmad, Waqas, Wang, Shengling, Ullah, Ata, Sheharyar, Yasir Shabir, Muhammad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210655/
https://www.ncbi.nlm.nih.gov/pubmed/30275433
http://dx.doi.org/10.3390/s18103305
_version_ 1783367165504651264
author Ahmad, Waqas
Wang, Shengling
Ullah, Ata
Sheharyar,
Yasir Shabir, Muhammad
author_facet Ahmad, Waqas
Wang, Shengling
Ullah, Ata
Sheharyar,
Yasir Shabir, Muhammad
author_sort Ahmad, Waqas
collection PubMed
description The Internet of things (IoT) comprises a huge collection of electronic devices connected to the Internet to ensure the dependable exchange of sensing information. It involves mobile workers (MWs) who perform various activities to support enormous online services and applications. In mobile crowd sensing (MCS), a massive amount of sensing data is also generated by smart devices. Broadly, in the IoT, verifying the credibility and truthfulness of MWs’ sensing reports is needed for MWs to expect attractive rewards. MWs are recruited by paying monetary incentives that must be awarded according to the quality and quantity of the task. The main problem is that MWs may perform false reporting by sharing low-quality reported data to reduce the effort required. In the literature, false reporting is improved by hiring enough MWs for a task to evaluate the trustworthiness and acceptability of information by aggregating the submitted reports. However, it may not be possible due to budget constraints, or when malicious reporters are not identified and penalized properly. Recruitment is still not a refined process, which contributes to low sensing quality. This paper presents Reputation, Quality-aware Recruitment Platform (RQRP) to recruit MWs based on reputation for quality reporting with the intention of platform profit maximization in the IoT scenario. RQRP comprises two main phases: filtration in the selection of MWs and verifying the credibility of reported tasks. The former is focused on the selection of suitable MWs based on different criteria (e.g., reputation, bid, expected quality, and expected platform utility), while the latter is more concerned with the verification of sensing quality, evaluation of reputation score, and incentives. We developed a testbed to evaluate and analyze the datasets, and a simulation was performed for data collection scenario from smart sensing devices. Results proved the superiority of RQRP against its counterparts in terms of truthfulness, quality, and platform profit maximization. To the best of our knowledge, we are the first to study the impact of truthful reporting on platform utility.
format Online
Article
Text
id pubmed-6210655
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-62106552018-11-02 Reputation-Aware Recruitment and Credible Reporting for Platform Utility in Mobile Crowd Sensing with Smart Devices in IoT Ahmad, Waqas Wang, Shengling Ullah, Ata Sheharyar, Yasir Shabir, Muhammad Sensors (Basel) Article The Internet of things (IoT) comprises a huge collection of electronic devices connected to the Internet to ensure the dependable exchange of sensing information. It involves mobile workers (MWs) who perform various activities to support enormous online services and applications. In mobile crowd sensing (MCS), a massive amount of sensing data is also generated by smart devices. Broadly, in the IoT, verifying the credibility and truthfulness of MWs’ sensing reports is needed for MWs to expect attractive rewards. MWs are recruited by paying monetary incentives that must be awarded according to the quality and quantity of the task. The main problem is that MWs may perform false reporting by sharing low-quality reported data to reduce the effort required. In the literature, false reporting is improved by hiring enough MWs for a task to evaluate the trustworthiness and acceptability of information by aggregating the submitted reports. However, it may not be possible due to budget constraints, or when malicious reporters are not identified and penalized properly. Recruitment is still not a refined process, which contributes to low sensing quality. This paper presents Reputation, Quality-aware Recruitment Platform (RQRP) to recruit MWs based on reputation for quality reporting with the intention of platform profit maximization in the IoT scenario. RQRP comprises two main phases: filtration in the selection of MWs and verifying the credibility of reported tasks. The former is focused on the selection of suitable MWs based on different criteria (e.g., reputation, bid, expected quality, and expected platform utility), while the latter is more concerned with the verification of sensing quality, evaluation of reputation score, and incentives. We developed a testbed to evaluate and analyze the datasets, and a simulation was performed for data collection scenario from smart sensing devices. Results proved the superiority of RQRP against its counterparts in terms of truthfulness, quality, and platform profit maximization. To the best of our knowledge, we are the first to study the impact of truthful reporting on platform utility. MDPI 2018-10-01 /pmc/articles/PMC6210655/ /pubmed/30275433 http://dx.doi.org/10.3390/s18103305 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ahmad, Waqas
Wang, Shengling
Ullah, Ata
Sheharyar,
Yasir Shabir, Muhammad
Reputation-Aware Recruitment and Credible Reporting for Platform Utility in Mobile Crowd Sensing with Smart Devices in IoT
title Reputation-Aware Recruitment and Credible Reporting for Platform Utility in Mobile Crowd Sensing with Smart Devices in IoT
title_full Reputation-Aware Recruitment and Credible Reporting for Platform Utility in Mobile Crowd Sensing with Smart Devices in IoT
title_fullStr Reputation-Aware Recruitment and Credible Reporting for Platform Utility in Mobile Crowd Sensing with Smart Devices in IoT
title_full_unstemmed Reputation-Aware Recruitment and Credible Reporting for Platform Utility in Mobile Crowd Sensing with Smart Devices in IoT
title_short Reputation-Aware Recruitment and Credible Reporting for Platform Utility in Mobile Crowd Sensing with Smart Devices in IoT
title_sort reputation-aware recruitment and credible reporting for platform utility in mobile crowd sensing with smart devices in iot
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210655/
https://www.ncbi.nlm.nih.gov/pubmed/30275433
http://dx.doi.org/10.3390/s18103305
work_keys_str_mv AT ahmadwaqas reputationawarerecruitmentandcrediblereportingforplatformutilityinmobilecrowdsensingwithsmartdevicesiniot
AT wangshengling reputationawarerecruitmentandcrediblereportingforplatformutilityinmobilecrowdsensingwithsmartdevicesiniot
AT ullahata reputationawarerecruitmentandcrediblereportingforplatformutilityinmobilecrowdsensingwithsmartdevicesiniot
AT sheharyar reputationawarerecruitmentandcrediblereportingforplatformutilityinmobilecrowdsensingwithsmartdevicesiniot
AT yasirshabirmuhammad reputationawarerecruitmentandcrediblereportingforplatformutilityinmobilecrowdsensingwithsmartdevicesiniot