Cargando…
Hyperspectral Remote Sensing Image Classification Based on Maximum Overlap Pooling Convolutional Neural Network
In a traditional convolutional neural network structure, pooling layers generally use an average pooling method: a non-overlapping pooling. However, this condition results in similarities in the extracted image features, especially for the hyperspectral images of a continuous spectrum, which makes i...
Autores principales: | Li, Chenming, Yang, Simon X., Yang, Yao, Gao, Hongmin, Zhao, Jia, Qu, Xiaoyu, Wang, Yongchang, Yao, Dan, Gao, Jianbing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210679/ https://www.ncbi.nlm.nih.gov/pubmed/30360445 http://dx.doi.org/10.3390/s18103587 |
Ejemplares similares
-
Deep Belief Network for Spectral–Spatial Classification of Hyperspectral Remote Sensor Data
por: Li, Chenming, et al.
Publicado: (2019) -
Dimension Reduction for Hyperspectral Remote Sensor Data Based on Multi-Objective Particle Swarm Optimization Algorithm and Game Theory
por: Gao, Hongmin, et al.
Publicado: (2019) -
Hybrid Dilated Convolution with Multi-Scale Residual Fusion Network for Hyperspectral Image Classification
por: Li, Chenming, et al.
Publicado: (2021) -
A Hyperspectral Image Classification Method Based on Multi-Discriminator Generative Adversarial Networks
por: Gao, Hongmin, et al.
Publicado: (2019) -
Lightweight 3D Dense Autoencoder Network for Hyperspectral Remote Sensing Image Classification
por: Bai, Yang, et al.
Publicado: (2023)