Cargando…
Feasibility Study of Advanced Neural Networks Applied to sEMG-Based Force Estimation
To find out the feasibility of different neural networks in sEMG-based force estimation, in this paper, three types of networks, namely convolutional neural network (CNN), long short-term memory (LSTM) network and their combination (C-LSTM) were applied to predict muscle force generated in static is...
Autores principales: | Xu, Lingfeng, Chen, Xiang, Cao, Shuai, Zhang, Xu, Chen, Xun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210714/ https://www.ncbi.nlm.nih.gov/pubmed/30257489 http://dx.doi.org/10.3390/s18103226 |
Ejemplares similares
-
Upper Limb End-Effector Force Estimation During Multi-Muscle Isometric Contraction Tasks Using HD-sEMG and Deep Belief Network
por: Hu, Ruochen, et al.
Publicado: (2020) -
The Influence of the sEMG Amplitude Estimation Technique on the EMG–Force Relationship
por: Ranaldi, Simone, et al.
Publicado: (2022) -
Optimal strategy of sEMG feature and measurement position for grasp force estimation
por: Wu, Changcheng, et al.
Publicado: (2021) -
Grip Force and 3D Push-Pull Force Estimation Based on sEMG and GRNN
por: Wu, Changcheng, et al.
Publicado: (2017) -
Automated Channel Selection in High-Density sEMG for Improved Force Estimation
por: Hajian, Gelareh, et al.
Publicado: (2020)