Cargando…
Perspective review of what is needed for molecular-specific fluorescence-guided surgery
Molecular image-guided surgery has the potential for translating the tools of molecular pathology to real-time guidance in surgery. As a whole, there are incredibly positive indicators of growth, including the first United States Food and Drug Administration clearance of an enzyme-biosynthetic-activ...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210787/ https://www.ncbi.nlm.nih.gov/pubmed/30291698 http://dx.doi.org/10.1117/1.JBO.23.10.100601 |
_version_ | 1783367197450567680 |
---|---|
author | Pogue, Brian W. Rosenthal, Eben L. Achilefu, Samuel van Dam, Gooitzen M. |
author_facet | Pogue, Brian W. Rosenthal, Eben L. Achilefu, Samuel van Dam, Gooitzen M. |
author_sort | Pogue, Brian W. |
collection | PubMed |
description | Molecular image-guided surgery has the potential for translating the tools of molecular pathology to real-time guidance in surgery. As a whole, there are incredibly positive indicators of growth, including the first United States Food and Drug Administration clearance of an enzyme-biosynthetic-activated probe for surgery guidance, and a growing number of companies producing agents and imaging systems. The strengths and opportunities must be continued but are hampered by important weaknesses and threats within the field. A key issue to solve is the inability of macroscopic imaging tools to resolve microscopic biological disease heterogeneity and the limitations in microscopic systems matching surgery workflow. A related issue is that parsing out true molecular-specific uptake from simple-enhanced permeability and retention is hard and requires extensive pathologic analysis or multiple in vivo tests, comparing fluorescence accumulation with standard histopathology and immunohistochemistry. A related concern in the field is the over-reliance on a finite number of chosen preclinical models, leading to early clinical translation when the probe might not be optimized for high intertumor variation or intratumor heterogeneity. The ultimate potential may require multiple probes, as are used in molecular pathology, and a combination with ultrahigh-resolution imaging and image recognition systems, which capture the data at a finer granularity than is possible by the surgeon. Alternatively, one might choose a more generalized approach by developing the tracer based on generic hallmarks of cancer to create a more “one-size-fits-all” concept, similar to metabolic aberrations as exploited in fluorodeoxyglucose - positron emission tomography (FDG-PET) (i.e., Warburg effect) or tumor acidity. Finally, methods to approach the problem of production cost minimization and regulatory approvals in a manner consistent with the potential revenue of the field will be important. In this area, some solid steps have been demonstrated in the use of fluorescent labeling commercial antibodies and separately in microdosing studies with small molecules. |
format | Online Article Text |
id | pubmed-6210787 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Society of Photo-Optical Instrumentation Engineers |
record_format | MEDLINE/PubMed |
spelling | pubmed-62107872019-10-05 Perspective review of what is needed for molecular-specific fluorescence-guided surgery Pogue, Brian W. Rosenthal, Eben L. Achilefu, Samuel van Dam, Gooitzen M. J Biomed Opt Perspectives Molecular image-guided surgery has the potential for translating the tools of molecular pathology to real-time guidance in surgery. As a whole, there are incredibly positive indicators of growth, including the first United States Food and Drug Administration clearance of an enzyme-biosynthetic-activated probe for surgery guidance, and a growing number of companies producing agents and imaging systems. The strengths and opportunities must be continued but are hampered by important weaknesses and threats within the field. A key issue to solve is the inability of macroscopic imaging tools to resolve microscopic biological disease heterogeneity and the limitations in microscopic systems matching surgery workflow. A related issue is that parsing out true molecular-specific uptake from simple-enhanced permeability and retention is hard and requires extensive pathologic analysis or multiple in vivo tests, comparing fluorescence accumulation with standard histopathology and immunohistochemistry. A related concern in the field is the over-reliance on a finite number of chosen preclinical models, leading to early clinical translation when the probe might not be optimized for high intertumor variation or intratumor heterogeneity. The ultimate potential may require multiple probes, as are used in molecular pathology, and a combination with ultrahigh-resolution imaging and image recognition systems, which capture the data at a finer granularity than is possible by the surgeon. Alternatively, one might choose a more generalized approach by developing the tracer based on generic hallmarks of cancer to create a more “one-size-fits-all” concept, similar to metabolic aberrations as exploited in fluorodeoxyglucose - positron emission tomography (FDG-PET) (i.e., Warburg effect) or tumor acidity. Finally, methods to approach the problem of production cost minimization and regulatory approvals in a manner consistent with the potential revenue of the field will be important. In this area, some solid steps have been demonstrated in the use of fluorescent labeling commercial antibodies and separately in microdosing studies with small molecules. Society of Photo-Optical Instrumentation Engineers 2018-10-05 2018-10 /pmc/articles/PMC6210787/ /pubmed/30291698 http://dx.doi.org/10.1117/1.JBO.23.10.100601 Text en © The Authors. https://creativecommons.org/licenses/by/3.0/ Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. |
spellingShingle | Perspectives Pogue, Brian W. Rosenthal, Eben L. Achilefu, Samuel van Dam, Gooitzen M. Perspective review of what is needed for molecular-specific fluorescence-guided surgery |
title | Perspective review of what is needed for molecular-specific fluorescence-guided surgery |
title_full | Perspective review of what is needed for molecular-specific fluorescence-guided surgery |
title_fullStr | Perspective review of what is needed for molecular-specific fluorescence-guided surgery |
title_full_unstemmed | Perspective review of what is needed for molecular-specific fluorescence-guided surgery |
title_short | Perspective review of what is needed for molecular-specific fluorescence-guided surgery |
title_sort | perspective review of what is needed for molecular-specific fluorescence-guided surgery |
topic | Perspectives |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210787/ https://www.ncbi.nlm.nih.gov/pubmed/30291698 http://dx.doi.org/10.1117/1.JBO.23.10.100601 |
work_keys_str_mv | AT poguebrianw perspectivereviewofwhatisneededformolecularspecificfluorescenceguidedsurgery AT rosenthalebenl perspectivereviewofwhatisneededformolecularspecificfluorescenceguidedsurgery AT achilefusamuel perspectivereviewofwhatisneededformolecularspecificfluorescenceguidedsurgery AT vandamgooitzenm perspectivereviewofwhatisneededformolecularspecificfluorescenceguidedsurgery |