Cargando…
Gradient Projection with Approximate L(0) Norm Minimization for Sparse Reconstruction in Compressed Sensing
In the reconstruction of sparse signals in compressed sensing, the reconstruction algorithm is required to reconstruct the sparsest form of signal. In order to minimize the objective function, minimal norm algorithm and greedy pursuit algorithm are most commonly used. The minimum L(1) norm algorithm...
Autores principales: | Wei, Ziran, Zhang, Jianlin, Xu, Zhiyong, Huang, Yongmei, Liu, Yong, Fan, Xiangsuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210964/ https://www.ncbi.nlm.nih.gov/pubmed/30304858 http://dx.doi.org/10.3390/s18103373 |
Ejemplares similares
-
A Fast Sparse Recovery Algorithm for Compressed Sensing Using Approximate l(0) Norm and Modified Newton Method
por: Jin, Dingfei, et al.
Publicado: (2019) -
Compressed Imaging Reconstruction Based on Block Compressed Sensing with Conjugate Gradient Smoothed l(0) Norm
por: Zhang, Yongtian, et al.
Publicado: (2023) -
Smooth Approximation l
(0)-Norm Constrained Affine Projection Algorithm and Its Applications in Sparse Channel Estimation
por: Li, Yingsong, et al.
Publicado: (2014) -
Efficient sparse estimation on interval-censored data with approximated L0 norm: Application to child mortality
por: Chen, Yan, et al.
Publicado: (2021) -
Dim and Small Target Detection with a Combined New Norm and Self-Attention Mechanism of Low-Rank Sparse Inversion
por: Min, Lei, et al.
Publicado: (2023)