Cargando…
Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling
Sustainable freshwater management is underpinned by technologies which improve the efficiency of agricultural irrigation systems. Irrigation scheduling has the potential to incorporate real-time feedback from soil moisture and climatic sensors. However, for robust closed-loop decision support, model...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210977/ https://www.ncbi.nlm.nih.gov/pubmed/30314346 http://dx.doi.org/10.3390/s18103408 |
_version_ | 1783367238398509056 |
---|---|
author | Adeyemi, Olutobi Grove, Ivan Peets, Sven Domun, Yuvraj Norton, Tomas |
author_facet | Adeyemi, Olutobi Grove, Ivan Peets, Sven Domun, Yuvraj Norton, Tomas |
author_sort | Adeyemi, Olutobi |
collection | PubMed |
description | Sustainable freshwater management is underpinned by technologies which improve the efficiency of agricultural irrigation systems. Irrigation scheduling has the potential to incorporate real-time feedback from soil moisture and climatic sensors. However, for robust closed-loop decision support, models of the soil moisture dynamics are essential in order to predict crop water needs while adapting to external perturbation and disturbances. This paper presents a Dynamic Neural Network approach for modelling of the temporal soil moisture fluxes. The models are trained to generate a one-day-ahead prediction of the volumetric soil moisture content based on past soil moisture, precipitation, and climatic measurements. Using field data from three sites, a [Formula: see text] value above 0.94 was obtained during model evaluation in all sites. The models were also able to generate robust soil moisture predictions for independent sites which were not used in training the models. The application of the Dynamic Neural Network models in a predictive irrigation scheduling system was demonstrated using AQUACROP simulations of the potato-growing season. The predictive irrigation scheduling system was evaluated against a rule-based system that applies irrigation based on predefined thresholds. Results indicate that the predictive system achieves a water saving ranging between 20 and 46% while realizing a yield and water use efficiency similar to that of the rule-based system. |
format | Online Article Text |
id | pubmed-6210977 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-62109772018-11-02 Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling Adeyemi, Olutobi Grove, Ivan Peets, Sven Domun, Yuvraj Norton, Tomas Sensors (Basel) Article Sustainable freshwater management is underpinned by technologies which improve the efficiency of agricultural irrigation systems. Irrigation scheduling has the potential to incorporate real-time feedback from soil moisture and climatic sensors. However, for robust closed-loop decision support, models of the soil moisture dynamics are essential in order to predict crop water needs while adapting to external perturbation and disturbances. This paper presents a Dynamic Neural Network approach for modelling of the temporal soil moisture fluxes. The models are trained to generate a one-day-ahead prediction of the volumetric soil moisture content based on past soil moisture, precipitation, and climatic measurements. Using field data from three sites, a [Formula: see text] value above 0.94 was obtained during model evaluation in all sites. The models were also able to generate robust soil moisture predictions for independent sites which were not used in training the models. The application of the Dynamic Neural Network models in a predictive irrigation scheduling system was demonstrated using AQUACROP simulations of the potato-growing season. The predictive irrigation scheduling system was evaluated against a rule-based system that applies irrigation based on predefined thresholds. Results indicate that the predictive system achieves a water saving ranging between 20 and 46% while realizing a yield and water use efficiency similar to that of the rule-based system. MDPI 2018-10-11 /pmc/articles/PMC6210977/ /pubmed/30314346 http://dx.doi.org/10.3390/s18103408 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Adeyemi, Olutobi Grove, Ivan Peets, Sven Domun, Yuvraj Norton, Tomas Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling |
title | Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling |
title_full | Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling |
title_fullStr | Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling |
title_full_unstemmed | Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling |
title_short | Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling |
title_sort | dynamic neural network modelling of soil moisture content for predictive irrigation scheduling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210977/ https://www.ncbi.nlm.nih.gov/pubmed/30314346 http://dx.doi.org/10.3390/s18103408 |
work_keys_str_mv | AT adeyemiolutobi dynamicneuralnetworkmodellingofsoilmoisturecontentforpredictiveirrigationscheduling AT groveivan dynamicneuralnetworkmodellingofsoilmoisturecontentforpredictiveirrigationscheduling AT peetssven dynamicneuralnetworkmodellingofsoilmoisturecontentforpredictiveirrigationscheduling AT domunyuvraj dynamicneuralnetworkmodellingofsoilmoisturecontentforpredictiveirrigationscheduling AT nortontomas dynamicneuralnetworkmodellingofsoilmoisturecontentforpredictiveirrigationscheduling |