Cargando…
Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling
Sustainable freshwater management is underpinned by technologies which improve the efficiency of agricultural irrigation systems. Irrigation scheduling has the potential to incorporate real-time feedback from soil moisture and climatic sensors. However, for robust closed-loop decision support, model...
Autores principales: | Adeyemi, Olutobi, Grove, Ivan, Peets, Sven, Domun, Yuvraj, Norton, Tomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210977/ https://www.ncbi.nlm.nih.gov/pubmed/30314346 http://dx.doi.org/10.3390/s18103408 |
Ejemplares similares
-
Automatic Irrigation Scheduling on a Hedgerow Olive Orchard Using an Algorithm of Water Balance Readjusted with Soil Moisture Sensors
por: Millán, Sandra, et al.
Publicado: (2020) -
Mitigating moisture stress in Brassica juncea through deficit irrigation scheduling and hydrogel in ustocherpts soils of semi-arid India
por: Rathore, Sanjay Singh, et al.
Publicado: (2020) -
Soil Moisture Data Assimilation to Estimate Irrigation Water Use
por: Abolafia‐Rosenzweig, R., et al.
Publicado: (2019) -
Sediment loss in response to scheduled pasture ploughing and reseeding: The importance of soil moisture content in controlling risk
por: Pulley, S., et al.
Publicado: (2020) -
Analysis of the Variability in Soil Moisture Measurements by Capacitance Sensors in a Drip-Irrigated Orchard
por: Domínguez-Niño, Jesús María, et al.
Publicado: (2020)