Cargando…
A Multimodal Feature Fusion-Based Deep Learning Method for Online Fault Diagnosis of Rotating Machinery
Rotating machinery usually suffers from a type of fault, where the fault feature extracted in the frequency domain is significant, while the fault feature extracted in the time domain is insignificant. For this type of fault, a deep learning-based fault diagnosis method developed in the frequency do...
Autores principales: | Zhou, Funa, Hu, Po, Yang, Shuai, Wen, Chenglin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210996/ https://www.ncbi.nlm.nih.gov/pubmed/30340412 http://dx.doi.org/10.3390/s18103521 |
Ejemplares similares
-
Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning
por: Li, Chuan, et al.
Publicado: (2016) -
Rotating Machinery Fault Diagnosis Method by Combining Time-Frequency Domain Features and CNN Knowledge Transfer
por: Ye, Lihao, et al.
Publicado: (2021) -
Multi-Filter Clustering Fusion for Feature Selection in Rotating Machinery Fault Classification
por: Mochammad, Solichin, et al.
Publicado: (2022) -
Diagnosis of Multiple Faults in Rotating Machinery Using Ensemble Learning
por: Inyang, Udeme Ibanga, et al.
Publicado: (2023) -
Trend Feature Consistency Guided Deep Learning Method for Minor Fault Diagnosis
por: Jia, Pengpeng, et al.
Publicado: (2023)