Cargando…
Self-Adaptive Spectrum Analysis Based Bearing Fault Diagnosis
Bearings are critical parts of rotating machines, making bearing fault diagnosis based on signals a research hotspot through the ages. In real application scenarios, bearing signals are normally non-linear and unstable, and thus difficult to analyze in the time or frequency domain only. Meanwhile, f...
Autores principales: | Wu, Jie, Tang, Tang, Chen, Ming, Hu, Tianhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6211093/ https://www.ncbi.nlm.nih.gov/pubmed/30279383 http://dx.doi.org/10.3390/s18103312 |
Ejemplares similares
-
Compound Fault Diagnosis of Rolling Bearing Based on Singular Negentropy Difference Spectrum and Integrated Fast Spectral Correlation
por: Tang, Guiji, et al.
Publicado: (2020) -
Rolling Bearing Fault Diagnosis Based on an Improved HTT Transform
por: Pang, Bin, et al.
Publicado: (2018) -
Fault Diagnosis of Rolling Bearing Based on Fast Nonlocal Means and Envelop Spectrum
por: Lv, Yong, et al.
Publicado: (2015) -
An Attention EfficientNet-Based Strategy for Bearing Fault Diagnosis under Strong Noise
por: Hu, Bingbing, et al.
Publicado: (2022) -
Bearing Fault Diagnosis Based on Randomized Fisher Discriminant Analysis
por: Ye, Hejun, et al.
Publicado: (2022)