Cargando…

A genome-wide landscape of mRNAs, lncRNAs, and circRNAs during subcutaneous adipogenesis in pigs

BACKGROUND: Preadipocyte differentiation plays a critical role in subcutaneous fat deposition in pigs. However, the roles of different RNAs, such as messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in the differentiation process of subcutaneous preadipocytes, are...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xin, Liu, Kaiqing, Shan, Baosen, Wei, Shengjuan, Li, Dongfeng, Han, Haiyin, Wei, Wei, Chen, Jie, Liu, Honglin, Zhang, Lifan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6211446/
https://www.ncbi.nlm.nih.gov/pubmed/30410752
http://dx.doi.org/10.1186/s40104-018-0292-7
Descripción
Sumario:BACKGROUND: Preadipocyte differentiation plays a critical role in subcutaneous fat deposition in pigs. However, the roles of different RNAs, such as messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in the differentiation process of subcutaneous preadipocytes, are still largely unclear. In the present study, a transcriptome analysis, including the analysis of mRNAs, lncRNAs, and circRNAs, during different differentiation stages, namely, day 0 (D0), day 2 (D2), day 4 (D4), and day 8 (D8), of subcutaneous preadipocytes from Chinese Erhualian pigs was performed. RESULTS: A total of 1554, 470, 1344, 1777, and 676 differentially expressed (DE) mRNAs, 112, 58, 95, 136, and 93 DE lncRNAs, and 902, 787, 710, 932, and 850 DE circRNAs were identified between D2 and D0, between D4 and D2, between D8 and D4, between D4 and D0, and between D8 and D0, respectively. Furthermore, functional enrichment analysis showed that the common DE mRNAs during the entire differentiation process were mainly involved in lipid metabolic and cell differentiation processes. Additionally, co-expression network analysis identified the potential lncRNAs related to adipogenesis, e.g., MSTRG.131380 and MSTRG.62128. CONCLUSIONS: Our study provides new insights of the expression changes of RNAs during adipogenic differentiation, which might contribute to the phenotype of subcutaneous adipogenesis. These results greatly improve our understanding of the molecular mechanisms regulating subcutaneous fat deposition in pigs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40104-018-0292-7) contains supplementary material, which is available to authorized users.