Cargando…
Self-adapted clustering of solute atoms into a confined two-dimensional prismatic platelet with an ellipse-like quasi-unit cell
This paper reports a new structured prismatic platelet, self-assembled by an ellipse-like quasi-unit cell, precipitated in Mg–In–Yb and Mg–In–Ca ternary alloys and aged isothermally at 200°C using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy combined w...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6211520/ https://www.ncbi.nlm.nih.gov/pubmed/30443366 http://dx.doi.org/10.1107/S205225251801415X |
Sumario: | This paper reports a new structured prismatic platelet, self-assembled by an ellipse-like quasi-unit cell, precipitated in Mg–In–Yb and Mg–In–Ca ternary alloys and aged isothermally at 200°C using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy combined with density functional theory computations. The ordered stacking of solute atoms along the [0001](α) direction based on elliptically shaped self-adapted clustering leads to the generation of the quasi-unit cell. The bonding of these ellipse-like quasi-unit-cell rods by the Mg atomic columns along the 〈[Image: see text]〉(α) directions formed a two-dimensional planar structure, which has three variants with a {[Image: see text]}(α) habit plane and full coherence with the α-Mg matrix. This finding is important for understanding the clustering and stacking behaviors of solute atoms in condensed matter, and is expected to guide the future design of novel high-strength Mg alloys strengthened by such high-density prismatic platelets. |
---|