Cargando…
Enhancing the robustness of recommender systems against spammers
The accuracy and diversity of recommendation algorithms have always been the research hotspot of recommender systems. A good recommender system should not only have high accuracy and diversity, but also have adequate robustness against spammer attacks. However, the issue of recommendation robustness...
Autores principales: | Zhang, Chengjun, Liu, Jin, Qu, Yanzhen, Han, Tianqi, Ge, Xujun, Zeng, An |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6211683/ https://www.ncbi.nlm.nih.gov/pubmed/30383766 http://dx.doi.org/10.1371/journal.pone.0206458 |
Ejemplares similares
-
Evidential Group Spammers Detection
por: Ben Khalifa, Malika, et al.
Publicado: (2020) -
Inside the SPAM Cartel: By Spammer-X
por: Spammer-X, Spammer-X
Publicado: (2004) -
Spammer group detection and diversification of customers’ reviews
por: Hussain, Naveed, et al.
Publicado: (2021) -
Spammer detection using multi-classifier information fusion based on evidential reasoning rule
por: Liu, Shuaitong, et al.
Publicado: (2022) -
Robustness of privacy-preserving collaborative recommenders against popularity bias problem
por: Gulsoy, Mert, et al.
Publicado: (2023)