Cargando…
Modulation of NCAM/FGFR1 signaling suppresses EMT program in human proximal tubular epithelial cells
Neural cell adhesion molecule (NCAM) and fibroblast growth factor receptor 1 (FGFR1) cross-talk have been involved in epithelial-to-mesenchymal transition (EMT) process during carcinogenesis. Since EMT also contributes to maladaptive repair and parenchymal damage during renal fibrosis, we became enc...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6211750/ https://www.ncbi.nlm.nih.gov/pubmed/30383875 http://dx.doi.org/10.1371/journal.pone.0206786 |
_version_ | 1783367402078076928 |
---|---|
author | Životić, Maja Tampe, Björn Müller, Gerhard Müller, Claudia Lipkovski, Aleksandar Xu, Xingbo Nyamsuren, Gunsmaa Zeisberg, Michael Marković-Lipkovski, Jasmina |
author_facet | Životić, Maja Tampe, Björn Müller, Gerhard Müller, Claudia Lipkovski, Aleksandar Xu, Xingbo Nyamsuren, Gunsmaa Zeisberg, Michael Marković-Lipkovski, Jasmina |
author_sort | Životić, Maja |
collection | PubMed |
description | Neural cell adhesion molecule (NCAM) and fibroblast growth factor receptor 1 (FGFR1) cross-talk have been involved in epithelial-to-mesenchymal transition (EMT) process during carcinogenesis. Since EMT also contributes to maladaptive repair and parenchymal damage during renal fibrosis, we became encouraged to explore the role of NCAM/FGFR1 signaling as initiating or driving forces of EMT program in cultured human proximal tubular epithelial cells (TECs). TECs stimulated with TGF-β1 (10ng/mL) was used as an established in vitro EMT model. TGF-β1 downstream effectors were detected in vitro, as well as in 50 biopsies of different human kidney diseases to explore their in vivo correlation. NCAM/FGFR1 signaling and its modulation by FGFR1 inhibitor PD173074 (100nM) were analyzed by light microscopy, immunolabeling, qRT-PCR and scratch assays. Morphological changes associated with EMT appeared 48h after TGF-ß1 treatment and was clearly apparent after 72 hours, followed by loss of CDH1 (encoding E-Cadherin) and transcriptional induction of SNAI1 (SNAIL), SNAI2 (SLUG), TWIST1, MMP2, MMP9, CDH2 (N-Cadherin), ITGA5 (integrin-α5), ITGB1 (integrin-β1), ACTA2 (α-SMA) and S100A4 (FSP1). Moreover, at the early stage of EMT program (24 hours upon TGF-β1 exposure), transcriptional induction of several NCAM isoforms along with FGFR1 was observed, implicating a mechanistic link between NCAM/FGFR1 signaling and induction of EMT. These assumptions were further supported by the inhibition of the EMT program after specific blocking of FGFR1 signaling by PD173074. Finally, there was evidence for an in vivo TGF-β1 pathway activation in diseased human kidneys and correlation with impaired renal excretory functions. Collectively, NCAM/FGFR1 signaling appears to be involved in the initial phase of TGF-ß1 initiated EMT which can be effectively suppressed by application of FGFR inhibitor. |
format | Online Article Text |
id | pubmed-6211750 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-62117502018-11-19 Modulation of NCAM/FGFR1 signaling suppresses EMT program in human proximal tubular epithelial cells Životić, Maja Tampe, Björn Müller, Gerhard Müller, Claudia Lipkovski, Aleksandar Xu, Xingbo Nyamsuren, Gunsmaa Zeisberg, Michael Marković-Lipkovski, Jasmina PLoS One Research Article Neural cell adhesion molecule (NCAM) and fibroblast growth factor receptor 1 (FGFR1) cross-talk have been involved in epithelial-to-mesenchymal transition (EMT) process during carcinogenesis. Since EMT also contributes to maladaptive repair and parenchymal damage during renal fibrosis, we became encouraged to explore the role of NCAM/FGFR1 signaling as initiating or driving forces of EMT program in cultured human proximal tubular epithelial cells (TECs). TECs stimulated with TGF-β1 (10ng/mL) was used as an established in vitro EMT model. TGF-β1 downstream effectors were detected in vitro, as well as in 50 biopsies of different human kidney diseases to explore their in vivo correlation. NCAM/FGFR1 signaling and its modulation by FGFR1 inhibitor PD173074 (100nM) were analyzed by light microscopy, immunolabeling, qRT-PCR and scratch assays. Morphological changes associated with EMT appeared 48h after TGF-ß1 treatment and was clearly apparent after 72 hours, followed by loss of CDH1 (encoding E-Cadherin) and transcriptional induction of SNAI1 (SNAIL), SNAI2 (SLUG), TWIST1, MMP2, MMP9, CDH2 (N-Cadherin), ITGA5 (integrin-α5), ITGB1 (integrin-β1), ACTA2 (α-SMA) and S100A4 (FSP1). Moreover, at the early stage of EMT program (24 hours upon TGF-β1 exposure), transcriptional induction of several NCAM isoforms along with FGFR1 was observed, implicating a mechanistic link between NCAM/FGFR1 signaling and induction of EMT. These assumptions were further supported by the inhibition of the EMT program after specific blocking of FGFR1 signaling by PD173074. Finally, there was evidence for an in vivo TGF-β1 pathway activation in diseased human kidneys and correlation with impaired renal excretory functions. Collectively, NCAM/FGFR1 signaling appears to be involved in the initial phase of TGF-ß1 initiated EMT which can be effectively suppressed by application of FGFR inhibitor. Public Library of Science 2018-11-01 /pmc/articles/PMC6211750/ /pubmed/30383875 http://dx.doi.org/10.1371/journal.pone.0206786 Text en © 2018 Životić et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Životić, Maja Tampe, Björn Müller, Gerhard Müller, Claudia Lipkovski, Aleksandar Xu, Xingbo Nyamsuren, Gunsmaa Zeisberg, Michael Marković-Lipkovski, Jasmina Modulation of NCAM/FGFR1 signaling suppresses EMT program in human proximal tubular epithelial cells |
title | Modulation of NCAM/FGFR1 signaling suppresses EMT program in human proximal tubular epithelial cells |
title_full | Modulation of NCAM/FGFR1 signaling suppresses EMT program in human proximal tubular epithelial cells |
title_fullStr | Modulation of NCAM/FGFR1 signaling suppresses EMT program in human proximal tubular epithelial cells |
title_full_unstemmed | Modulation of NCAM/FGFR1 signaling suppresses EMT program in human proximal tubular epithelial cells |
title_short | Modulation of NCAM/FGFR1 signaling suppresses EMT program in human proximal tubular epithelial cells |
title_sort | modulation of ncam/fgfr1 signaling suppresses emt program in human proximal tubular epithelial cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6211750/ https://www.ncbi.nlm.nih.gov/pubmed/30383875 http://dx.doi.org/10.1371/journal.pone.0206786 |
work_keys_str_mv | AT zivoticmaja modulationofncamfgfr1signalingsuppressesemtprograminhumanproximaltubularepithelialcells AT tampebjorn modulationofncamfgfr1signalingsuppressesemtprograminhumanproximaltubularepithelialcells AT mullergerhard modulationofncamfgfr1signalingsuppressesemtprograminhumanproximaltubularepithelialcells AT mullerclaudia modulationofncamfgfr1signalingsuppressesemtprograminhumanproximaltubularepithelialcells AT lipkovskialeksandar modulationofncamfgfr1signalingsuppressesemtprograminhumanproximaltubularepithelialcells AT xuxingbo modulationofncamfgfr1signalingsuppressesemtprograminhumanproximaltubularepithelialcells AT nyamsurengunsmaa modulationofncamfgfr1signalingsuppressesemtprograminhumanproximaltubularepithelialcells AT zeisbergmichael modulationofncamfgfr1signalingsuppressesemtprograminhumanproximaltubularepithelialcells AT markoviclipkovskijasmina modulationofncamfgfr1signalingsuppressesemtprograminhumanproximaltubularepithelialcells |