Cargando…

The microRNA-29/PGC1α regulatory axis is critical for metabolic control of cardiac function

Different microRNAs (miRNAs), including miR-29 family, may play a role in the development of heart failure (HF), but the underlying molecular mechanisms in HF pathogenesis remain unclear. We aimed at characterizing mice deficient in miR-29 in order to address the functional relevance of this family...

Descripción completa

Detalles Bibliográficos
Autores principales: Caravia, Xurde M., Fanjul, Víctor, Oliver, Eduardo, Roiz-Valle, David, Morán-Álvarez, Alba, Desdín-Micó, Gabriela, Mittelbrunn, María, Cabo, Roberto, Vega, José A., Rodríguez, Francisco, Fueyo, Antonio, Gómez, Mónica, Lobo-González, Manuel, Bueno, Héctor, Velasco, Gloria, Freije, José M. P., Andrés, Vicente, Ibáñez, Borja, Ugalde, Alejandro P., López-Otín, Carlos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6211751/
https://www.ncbi.nlm.nih.gov/pubmed/30346946
http://dx.doi.org/10.1371/journal.pbio.2006247
_version_ 1783367402317152256
author Caravia, Xurde M.
Fanjul, Víctor
Oliver, Eduardo
Roiz-Valle, David
Morán-Álvarez, Alba
Desdín-Micó, Gabriela
Mittelbrunn, María
Cabo, Roberto
Vega, José A.
Rodríguez, Francisco
Fueyo, Antonio
Gómez, Mónica
Lobo-González, Manuel
Bueno, Héctor
Velasco, Gloria
Freije, José M. P.
Andrés, Vicente
Ibáñez, Borja
Ugalde, Alejandro P.
López-Otín, Carlos
author_facet Caravia, Xurde M.
Fanjul, Víctor
Oliver, Eduardo
Roiz-Valle, David
Morán-Álvarez, Alba
Desdín-Micó, Gabriela
Mittelbrunn, María
Cabo, Roberto
Vega, José A.
Rodríguez, Francisco
Fueyo, Antonio
Gómez, Mónica
Lobo-González, Manuel
Bueno, Héctor
Velasco, Gloria
Freije, José M. P.
Andrés, Vicente
Ibáñez, Borja
Ugalde, Alejandro P.
López-Otín, Carlos
author_sort Caravia, Xurde M.
collection PubMed
description Different microRNAs (miRNAs), including miR-29 family, may play a role in the development of heart failure (HF), but the underlying molecular mechanisms in HF pathogenesis remain unclear. We aimed at characterizing mice deficient in miR-29 in order to address the functional relevance of this family of miRNAs in the cardiovascular system and its contribution to heart disease. In this work, we show that mice deficient in miR-29a/b1 develop vascular remodeling and systemic hypertension, as well as HF with preserved ejection fraction (HFpEF) characterized by myocardial fibrosis, diastolic dysfunction, and pulmonary congestion, and die prematurely. We also found evidence that the absence of miR-29 triggers the up-regulation of its target, the master metabolic regulator PGC1α, which in turn generates profound alterations in mitochondrial biogenesis, leading to a pathological accumulation of small mitochondria in mutant animals that contribute to cardiac disease. Notably, we demonstrate that systemic hypertension and HFpEF caused by miR-29 deficiency can be rescued by PGC1α haploinsufficiency, which reduces cardiac mitochondrial accumulation and extends longevity of miR-29–mutant mice. In addition, PGC1α is overexpressed in hearts from patients with HF. Collectively, our findings demonstrate the in vivo role of miR-29 in cardiovascular homeostasis and unveil a novel miR-29/PGC1α regulatory circuitry of functional relevance for cell metabolism under normal and pathological conditions.
format Online
Article
Text
id pubmed-6211751
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-62117512018-11-19 The microRNA-29/PGC1α regulatory axis is critical for metabolic control of cardiac function Caravia, Xurde M. Fanjul, Víctor Oliver, Eduardo Roiz-Valle, David Morán-Álvarez, Alba Desdín-Micó, Gabriela Mittelbrunn, María Cabo, Roberto Vega, José A. Rodríguez, Francisco Fueyo, Antonio Gómez, Mónica Lobo-González, Manuel Bueno, Héctor Velasco, Gloria Freije, José M. P. Andrés, Vicente Ibáñez, Borja Ugalde, Alejandro P. López-Otín, Carlos PLoS Biol Research Article Different microRNAs (miRNAs), including miR-29 family, may play a role in the development of heart failure (HF), but the underlying molecular mechanisms in HF pathogenesis remain unclear. We aimed at characterizing mice deficient in miR-29 in order to address the functional relevance of this family of miRNAs in the cardiovascular system and its contribution to heart disease. In this work, we show that mice deficient in miR-29a/b1 develop vascular remodeling and systemic hypertension, as well as HF with preserved ejection fraction (HFpEF) characterized by myocardial fibrosis, diastolic dysfunction, and pulmonary congestion, and die prematurely. We also found evidence that the absence of miR-29 triggers the up-regulation of its target, the master metabolic regulator PGC1α, which in turn generates profound alterations in mitochondrial biogenesis, leading to a pathological accumulation of small mitochondria in mutant animals that contribute to cardiac disease. Notably, we demonstrate that systemic hypertension and HFpEF caused by miR-29 deficiency can be rescued by PGC1α haploinsufficiency, which reduces cardiac mitochondrial accumulation and extends longevity of miR-29–mutant mice. In addition, PGC1α is overexpressed in hearts from patients with HF. Collectively, our findings demonstrate the in vivo role of miR-29 in cardiovascular homeostasis and unveil a novel miR-29/PGC1α regulatory circuitry of functional relevance for cell metabolism under normal and pathological conditions. Public Library of Science 2018-10-22 /pmc/articles/PMC6211751/ /pubmed/30346946 http://dx.doi.org/10.1371/journal.pbio.2006247 Text en © 2018 Caravia et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Caravia, Xurde M.
Fanjul, Víctor
Oliver, Eduardo
Roiz-Valle, David
Morán-Álvarez, Alba
Desdín-Micó, Gabriela
Mittelbrunn, María
Cabo, Roberto
Vega, José A.
Rodríguez, Francisco
Fueyo, Antonio
Gómez, Mónica
Lobo-González, Manuel
Bueno, Héctor
Velasco, Gloria
Freije, José M. P.
Andrés, Vicente
Ibáñez, Borja
Ugalde, Alejandro P.
López-Otín, Carlos
The microRNA-29/PGC1α regulatory axis is critical for metabolic control of cardiac function
title The microRNA-29/PGC1α regulatory axis is critical for metabolic control of cardiac function
title_full The microRNA-29/PGC1α regulatory axis is critical for metabolic control of cardiac function
title_fullStr The microRNA-29/PGC1α regulatory axis is critical for metabolic control of cardiac function
title_full_unstemmed The microRNA-29/PGC1α regulatory axis is critical for metabolic control of cardiac function
title_short The microRNA-29/PGC1α regulatory axis is critical for metabolic control of cardiac function
title_sort microrna-29/pgc1α regulatory axis is critical for metabolic control of cardiac function
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6211751/
https://www.ncbi.nlm.nih.gov/pubmed/30346946
http://dx.doi.org/10.1371/journal.pbio.2006247
work_keys_str_mv AT caraviaxurdem themicrorna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT fanjulvictor themicrorna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT olivereduardo themicrorna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT roizvalledavid themicrorna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT moranalvarezalba themicrorna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT desdinmicogabriela themicrorna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT mittelbrunnmaria themicrorna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT caboroberto themicrorna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT vegajosea themicrorna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT rodriguezfrancisco themicrorna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT fueyoantonio themicrorna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT gomezmonica themicrorna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT lobogonzalezmanuel themicrorna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT buenohector themicrorna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT velascogloria themicrorna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT freijejosemp themicrorna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT andresvicente themicrorna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT ibanezborja themicrorna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT ugaldealejandrop themicrorna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT lopezotincarlos themicrorna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT caraviaxurdem microrna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT fanjulvictor microrna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT olivereduardo microrna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT roizvalledavid microrna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT moranalvarezalba microrna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT desdinmicogabriela microrna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT mittelbrunnmaria microrna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT caboroberto microrna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT vegajosea microrna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT rodriguezfrancisco microrna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT fueyoantonio microrna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT gomezmonica microrna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT lobogonzalezmanuel microrna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT buenohector microrna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT velascogloria microrna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT freijejosemp microrna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT andresvicente microrna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT ibanezborja microrna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT ugaldealejandrop microrna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction
AT lopezotincarlos microrna29pgc1aregulatoryaxisiscriticalformetaboliccontrolofcardiacfunction