Cargando…
Prediction of protein-ligand interactions from paired protein sequence motifs and ligand substructures
Identification of small molecule ligands that bind to proteins is a critical step in drug discovery. Computational methods have been developed to accelerate the prediction of protein-ligand binding, but often depend on 3D protein structures. As only a limited number of protein 3D structures have bee...
Autores principales: | Greenside, Peyton, Hillenmeyer, Maureen, Kundaje, Anshul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6211855/ https://www.ncbi.nlm.nih.gov/pubmed/29218866 |
Ejemplares similares
-
Discovering epistatic feature interactions from neural network models of regulatory DNA sequences
por: Greenside, Peyton, et al.
Publicado: (2018) -
Predicting target-ligand interactions using protein ligand-binding site and ligand substructures
por: Wang, Caihua, et al.
Publicado: (2015) -
Deciphering regulatory DNA sequences and noncoding genetic variants using neural network models of massively parallel reporter assays
por: Movva, Rajiv, et al.
Publicado: (2019) -
Prediction of Protein–ligand Interaction Based on Sequence Similarity and Ligand Structural Features
por: Karasev, Dmitry, et al.
Publicado: (2020) -
An interaction-motif-based scoring function for protein-ligand docking
por: Xie, Zhong-Ru, et al.
Publicado: (2010)