Cargando…

Evolution of Chikungunya virus in mosquito cells

It has been observed that replication of Chikungunya virus (CHIKV) in C6/36 Aedes albopictus cells has little effect on virus evolution. To characterize evolutionary patterns associated with CHIKV replication in mosquito cells, we performed serial passages of the LR2006 strain in Ae. albopictus cell...

Descripción completa

Detalles Bibliográficos
Autores principales: Mohamed Ali, Souand, Amroun, Abdennour, de Lamballerie, Xavier, Nougairède, Antoine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6212429/
https://www.ncbi.nlm.nih.gov/pubmed/30385797
http://dx.doi.org/10.1038/s41598-018-34561-x
Descripción
Sumario:It has been observed that replication of Chikungunya virus (CHIKV) in C6/36 Aedes albopictus cells has little effect on virus evolution. To characterize evolutionary patterns associated with CHIKV replication in mosquito cells, we performed serial passages of the LR2006 strain in Ae. albopictus cells (75 and 30 passages in C6/36 and U4.4 respectively) and Ae. aegypti cells (100 passages in AA-A20 and in AE) and studied genotypic changes accompanying adaptation during this evolutionary process. Quantitative analysis revealed cell specific patterns: low mutation rates in C6/36 cells except when a CHIKV strain pre-adapted to mammalian was used and typical features of adaptation to cell culture conditions with a high number of fixed mutations in AE and AA-A20 cells probably due to the weak permissiveness of these latter cell lines. Altogether, these results suggested that both cell line and viral strain influence rates of viral evolution. In contrast, characteristics and distribution of mutations were qualitatively very similar in all mosquito cells with a high level of parallel evolution including 4 deletion mutations. Serial passage in mammalian cells of viruses pre-adapted to mosquito cells revealed disappearance of almost all shared mutations suggesting that many of these mutational patterns are vector-specific.