Cargando…
Non-resonant light scattering in dispersions of 2D nanosheets
Extinction spectra of nanomaterial suspensions can be dominated by light scattering, hampering quantitative spectral analysis. No simple models exist for the wavelength-dependence of the scattering coefficients in suspensions of arbitrary-sized, high-aspect-ratio nanoparticles. Here, suspensions of...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6212482/ https://www.ncbi.nlm.nih.gov/pubmed/30385771 http://dx.doi.org/10.1038/s41467-018-07005-3 |
Sumario: | Extinction spectra of nanomaterial suspensions can be dominated by light scattering, hampering quantitative spectral analysis. No simple models exist for the wavelength-dependence of the scattering coefficients in suspensions of arbitrary-sized, high-aspect-ratio nanoparticles. Here, suspensions of BN, talc, GaS, Ni(OH)(2), Mg(OH)(2) and Cu(OH)(2) nanosheets are used to explore non-resonant scattering in wide-bandgap 2D nanomaterials. Using an integrating sphere, scattering coefficient (σ) spectra were measured for a number of size-selected fractions for each nanosheet type. Generally, σ scales as a power-law with wavelength in the non-resonant regime: σ(λ)∝[λ/〈L〉](−m), where 〈L〉 is the mean nanosheet length. For all materials, the scattering exponent, m, forms a master-curve, transitioning from m = 4 to m = 2, as the characteristic nanosheet area increases, indicating a transition from Rayleigh to van der Hulst scattering. In addition, once material density and refractive index are factored out, the proportionality constant relating σ to [λ/〈L〉](−m), also forms a master-curve when plotted versus 〈L〉. |
---|