Cargando…

Uracil moieties in Plasmodium falciparum genomic DNA

Plasmodium falciparum parasites undergo multiple genome duplication events during their development. Within the intraerythrocytic stages, parasites encounter an oxidative environment and DNA synthesis necessarily proceeds under these circumstances. In addition to these conditions, the extreme AT bia...

Descripción completa

Detalles Bibliográficos
Autores principales: Molnár, Petra, Marton, Lívia, Izrael, Richard, Pálinkás, Hajnalka L., Vértessy, Beáta G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6212640/
https://www.ncbi.nlm.nih.gov/pubmed/30410856
http://dx.doi.org/10.1002/2211-5463.12458
_version_ 1783367583734431744
author Molnár, Petra
Marton, Lívia
Izrael, Richard
Pálinkás, Hajnalka L.
Vértessy, Beáta G.
author_facet Molnár, Petra
Marton, Lívia
Izrael, Richard
Pálinkás, Hajnalka L.
Vértessy, Beáta G.
author_sort Molnár, Petra
collection PubMed
description Plasmodium falciparum parasites undergo multiple genome duplication events during their development. Within the intraerythrocytic stages, parasites encounter an oxidative environment and DNA synthesis necessarily proceeds under these circumstances. In addition to these conditions, the extreme AT bias of the P. falciparum genome poses further constraints for DNA synthesis. Taken together, these circumstances may allow appearance of damaged bases in the Plasmodium DNA. Here, we focus on uracil that may arise in DNA either via oxidative deamination or thymine‐replacing incorporation. We determine the level of uracil at the ring, trophozoite, and schizont intraerythrocytic stages and evaluate the base‐excision repair potential of P. falciparum to deal with uracil‐DNA repair. We find approximately 7–10 uracil per million bases in the different parasite stages. This level is considerably higher than found in other wild‐type organisms from bacteria to mammalian species. Based on a systematic assessment of P. falciparum genome and transcriptome databases, we conclude that uracil‐DNA repair relies on one single uracil‐DNA glycosylase and proceeds through the long‐patch base‐excision repair route. Although potentially efficient, the repair route still leaves considerable level of uracils in parasite DNA, which may contribute to mutation rates in P. falciparum.
format Online
Article
Text
id pubmed-6212640
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-62126402018-11-08 Uracil moieties in Plasmodium falciparum genomic DNA Molnár, Petra Marton, Lívia Izrael, Richard Pálinkás, Hajnalka L. Vértessy, Beáta G. FEBS Open Bio Research Articles Plasmodium falciparum parasites undergo multiple genome duplication events during their development. Within the intraerythrocytic stages, parasites encounter an oxidative environment and DNA synthesis necessarily proceeds under these circumstances. In addition to these conditions, the extreme AT bias of the P. falciparum genome poses further constraints for DNA synthesis. Taken together, these circumstances may allow appearance of damaged bases in the Plasmodium DNA. Here, we focus on uracil that may arise in DNA either via oxidative deamination or thymine‐replacing incorporation. We determine the level of uracil at the ring, trophozoite, and schizont intraerythrocytic stages and evaluate the base‐excision repair potential of P. falciparum to deal with uracil‐DNA repair. We find approximately 7–10 uracil per million bases in the different parasite stages. This level is considerably higher than found in other wild‐type organisms from bacteria to mammalian species. Based on a systematic assessment of P. falciparum genome and transcriptome databases, we conclude that uracil‐DNA repair relies on one single uracil‐DNA glycosylase and proceeds through the long‐patch base‐excision repair route. Although potentially efficient, the repair route still leaves considerable level of uracils in parasite DNA, which may contribute to mutation rates in P. falciparum. John Wiley and Sons Inc. 2018-09-29 /pmc/articles/PMC6212640/ /pubmed/30410856 http://dx.doi.org/10.1002/2211-5463.12458 Text en © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Molnár, Petra
Marton, Lívia
Izrael, Richard
Pálinkás, Hajnalka L.
Vértessy, Beáta G.
Uracil moieties in Plasmodium falciparum genomic DNA
title Uracil moieties in Plasmodium falciparum genomic DNA
title_full Uracil moieties in Plasmodium falciparum genomic DNA
title_fullStr Uracil moieties in Plasmodium falciparum genomic DNA
title_full_unstemmed Uracil moieties in Plasmodium falciparum genomic DNA
title_short Uracil moieties in Plasmodium falciparum genomic DNA
title_sort uracil moieties in plasmodium falciparum genomic dna
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6212640/
https://www.ncbi.nlm.nih.gov/pubmed/30410856
http://dx.doi.org/10.1002/2211-5463.12458
work_keys_str_mv AT molnarpetra uracilmoietiesinplasmodiumfalciparumgenomicdna
AT martonlivia uracilmoietiesinplasmodiumfalciparumgenomicdna
AT izraelrichard uracilmoietiesinplasmodiumfalciparumgenomicdna
AT palinkashajnalkal uracilmoietiesinplasmodiumfalciparumgenomicdna
AT vertessybeatag uracilmoietiesinplasmodiumfalciparumgenomicdna