Cargando…
Uracil moieties in Plasmodium falciparum genomic DNA
Plasmodium falciparum parasites undergo multiple genome duplication events during their development. Within the intraerythrocytic stages, parasites encounter an oxidative environment and DNA synthesis necessarily proceeds under these circumstances. In addition to these conditions, the extreme AT bia...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6212640/ https://www.ncbi.nlm.nih.gov/pubmed/30410856 http://dx.doi.org/10.1002/2211-5463.12458 |
_version_ | 1783367583734431744 |
---|---|
author | Molnár, Petra Marton, Lívia Izrael, Richard Pálinkás, Hajnalka L. Vértessy, Beáta G. |
author_facet | Molnár, Petra Marton, Lívia Izrael, Richard Pálinkás, Hajnalka L. Vértessy, Beáta G. |
author_sort | Molnár, Petra |
collection | PubMed |
description | Plasmodium falciparum parasites undergo multiple genome duplication events during their development. Within the intraerythrocytic stages, parasites encounter an oxidative environment and DNA synthesis necessarily proceeds under these circumstances. In addition to these conditions, the extreme AT bias of the P. falciparum genome poses further constraints for DNA synthesis. Taken together, these circumstances may allow appearance of damaged bases in the Plasmodium DNA. Here, we focus on uracil that may arise in DNA either via oxidative deamination or thymine‐replacing incorporation. We determine the level of uracil at the ring, trophozoite, and schizont intraerythrocytic stages and evaluate the base‐excision repair potential of P. falciparum to deal with uracil‐DNA repair. We find approximately 7–10 uracil per million bases in the different parasite stages. This level is considerably higher than found in other wild‐type organisms from bacteria to mammalian species. Based on a systematic assessment of P. falciparum genome and transcriptome databases, we conclude that uracil‐DNA repair relies on one single uracil‐DNA glycosylase and proceeds through the long‐patch base‐excision repair route. Although potentially efficient, the repair route still leaves considerable level of uracils in parasite DNA, which may contribute to mutation rates in P. falciparum. |
format | Online Article Text |
id | pubmed-6212640 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-62126402018-11-08 Uracil moieties in Plasmodium falciparum genomic DNA Molnár, Petra Marton, Lívia Izrael, Richard Pálinkás, Hajnalka L. Vértessy, Beáta G. FEBS Open Bio Research Articles Plasmodium falciparum parasites undergo multiple genome duplication events during their development. Within the intraerythrocytic stages, parasites encounter an oxidative environment and DNA synthesis necessarily proceeds under these circumstances. In addition to these conditions, the extreme AT bias of the P. falciparum genome poses further constraints for DNA synthesis. Taken together, these circumstances may allow appearance of damaged bases in the Plasmodium DNA. Here, we focus on uracil that may arise in DNA either via oxidative deamination or thymine‐replacing incorporation. We determine the level of uracil at the ring, trophozoite, and schizont intraerythrocytic stages and evaluate the base‐excision repair potential of P. falciparum to deal with uracil‐DNA repair. We find approximately 7–10 uracil per million bases in the different parasite stages. This level is considerably higher than found in other wild‐type organisms from bacteria to mammalian species. Based on a systematic assessment of P. falciparum genome and transcriptome databases, we conclude that uracil‐DNA repair relies on one single uracil‐DNA glycosylase and proceeds through the long‐patch base‐excision repair route. Although potentially efficient, the repair route still leaves considerable level of uracils in parasite DNA, which may contribute to mutation rates in P. falciparum. John Wiley and Sons Inc. 2018-09-29 /pmc/articles/PMC6212640/ /pubmed/30410856 http://dx.doi.org/10.1002/2211-5463.12458 Text en © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Molnár, Petra Marton, Lívia Izrael, Richard Pálinkás, Hajnalka L. Vértessy, Beáta G. Uracil moieties in Plasmodium falciparum genomic DNA |
title | Uracil moieties in Plasmodium falciparum genomic DNA
|
title_full | Uracil moieties in Plasmodium falciparum genomic DNA
|
title_fullStr | Uracil moieties in Plasmodium falciparum genomic DNA
|
title_full_unstemmed | Uracil moieties in Plasmodium falciparum genomic DNA
|
title_short | Uracil moieties in Plasmodium falciparum genomic DNA
|
title_sort | uracil moieties in plasmodium falciparum genomic dna |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6212640/ https://www.ncbi.nlm.nih.gov/pubmed/30410856 http://dx.doi.org/10.1002/2211-5463.12458 |
work_keys_str_mv | AT molnarpetra uracilmoietiesinplasmodiumfalciparumgenomicdna AT martonlivia uracilmoietiesinplasmodiumfalciparumgenomicdna AT izraelrichard uracilmoietiesinplasmodiumfalciparumgenomicdna AT palinkashajnalkal uracilmoietiesinplasmodiumfalciparumgenomicdna AT vertessybeatag uracilmoietiesinplasmodiumfalciparumgenomicdna |