Cargando…
The influence of a first-order antedependence model and hyperparameters in BayesCπ for genomic prediction
OBJECTIVE: The Bayesian first-order antedependence models, which specified single nucleotide polymorphisms (SNP) effects as being spatially correlated in the conventional BayesA/B, had more accurate genomic prediction than their corresponding classical counterparts. Given advantages of BayesCπ over...
Autores principales: | Li, Xiujin, Liu, Xiaohong, Chen, Yaosheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST)
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6212739/ https://www.ncbi.nlm.nih.gov/pubmed/30056688 http://dx.doi.org/10.5713/ajas.18.0102 |
Ejemplares similares
-
Antedependence models for longitudinal data
por: Zimmerman, Dale L, et al.
Publicado: (2009) -
Maximum likelihood based analysis of equally spaced longitudinal count data with first-order antedependence and overdispersion
por: Gamerman, Victoria, et al.
Publicado: (2016) -
Improving the computational efficiency of fully Bayes inference and assessing the effect of misspecification of hyperparameters in whole-genome prediction models
por: Yang, Wenzhao, et al.
Publicado: (2015) -
Joint prediction of multiple quantitative traits using a Bayesian multivariate antedependence model
por: Jiang, J, et al.
Publicado: (2015) -
Heuristic hyperparameter optimization of deep learning models for genomic prediction
por: Han, Junjie, et al.
Publicado: (2021)