Cargando…
Diffusivities and Atomic Mobilities in bcc Ti-Mo-Zr Alloys
β-type (with bcc structure) titanium alloys have been widely used as artificial implants in the medical field due to their favorable properties. Among them, Ti-Mo alloy attracted numerous interests as metallic biomaterials. Understanding of kinetic characteristics of Ti alloys is critical to underst...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6212804/ https://www.ncbi.nlm.nih.gov/pubmed/30297670 http://dx.doi.org/10.3390/ma11101909 |
Sumario: | β-type (with bcc structure) titanium alloys have been widely used as artificial implants in the medical field due to their favorable properties. Among them, Ti-Mo alloy attracted numerous interests as metallic biomaterials. Understanding of kinetic characteristics of Ti alloys is critical to understand and manipulate the phase transformation and microstructure evolution during homogenization and precipitation. In this work, diffusion couple technique was employed to investigate the diffusion behaviors in bcc Ti-Mo-Zr alloys. The diffusion couples were prepared and annealed at 1373 K for 72 h and 1473 K for 48 h, respectively. The composition-distance profiles were obtained via electron probe micro-analysis (EPMA). The chemical diffusion coefficients and impurity diffusion coefficients were extracted via the Whittle-Green method and Hall method. The obtained diffusion coefficients were assessed to develop a self-consistent atomic mobility database of bcc phase in Ti-Mo-Zr system. The calculated diffusion coefficients were compared with the experimental results. They showed good agreement. Simulations were implemented by Dictra Module in Thermo-Calc software. The predicted composition-distance profiles, inter-diffusion flux, and diffusion paths are consistent with experimental data, confirming the accuracy of the database. |
---|