Cargando…

Gene Essentiality Analyzed by In Vivo Transposon Mutagenesis and Machine Learning in a Stable Haploid Isolate of Candida albicans

Knowing the full set of essential genes for a given organism provides important information about ways to promote, and to limit, its growth and survival. For many non-model organisms, the lack of a stable haploid state and low transformation efficiencies impede the use of conventional approaches to...

Descripción completa

Detalles Bibliográficos
Autores principales: Segal, Ella Shtifman, Gritsenko, Vladimir, Levitan, Anton, Yadav, Bhawna, Dror, Naama, Steenwyk, Jacob L., Silberberg, Yael, Mielich, Kevin, Rokas, Antonis, Gow, Neil A. R., Kunze, Reinhard, Sharan, Roded, Berman, Judith
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6212825/
https://www.ncbi.nlm.nih.gov/pubmed/30377286
http://dx.doi.org/10.1128/mBio.02048-18
_version_ 1783367628284231680
author Segal, Ella Shtifman
Gritsenko, Vladimir
Levitan, Anton
Yadav, Bhawna
Dror, Naama
Steenwyk, Jacob L.
Silberberg, Yael
Mielich, Kevin
Rokas, Antonis
Gow, Neil A. R.
Kunze, Reinhard
Sharan, Roded
Berman, Judith
author_facet Segal, Ella Shtifman
Gritsenko, Vladimir
Levitan, Anton
Yadav, Bhawna
Dror, Naama
Steenwyk, Jacob L.
Silberberg, Yael
Mielich, Kevin
Rokas, Antonis
Gow, Neil A. R.
Kunze, Reinhard
Sharan, Roded
Berman, Judith
author_sort Segal, Ella Shtifman
collection PubMed
description Knowing the full set of essential genes for a given organism provides important information about ways to promote, and to limit, its growth and survival. For many non-model organisms, the lack of a stable haploid state and low transformation efficiencies impede the use of conventional approaches to generate a genome-wide comprehensive set of mutant strains and the identification of the genes essential for growth. Here we report on the isolation and utilization of a highly stable haploid derivative of the human pathogenic fungus Candida albicans, together with a modified heterologous transposon and machine learning (ML) analysis method, to predict the degree to which all of the open reading frames are required for growth under standard laboratory conditions. We identified 1,610 C. albicans essential genes, including 1,195 with high “essentiality confidence” scores, thereby increasing the number of essential genes (currently 66 in the Candida Genome Database) by >20-fold and providing an unbiased approach to determine the degree of confidence in the determination of essentiality. Among the genes essential in C. albicans were 602 genes also essential in the model budding and fission yeasts analyzed by both deletion and transposon mutagenesis. We also identified essential genes conserved among the four major human pathogens C. albicans, Aspergillus fumigatus, Cryptococcus neoformans, and Histoplasma capsulatum and highlight those that lack homologs in humans and that thus could serve as potential targets for the design of antifungal therapies.
format Online
Article
Text
id pubmed-6212825
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-62128252018-11-09 Gene Essentiality Analyzed by In Vivo Transposon Mutagenesis and Machine Learning in a Stable Haploid Isolate of Candida albicans Segal, Ella Shtifman Gritsenko, Vladimir Levitan, Anton Yadav, Bhawna Dror, Naama Steenwyk, Jacob L. Silberberg, Yael Mielich, Kevin Rokas, Antonis Gow, Neil A. R. Kunze, Reinhard Sharan, Roded Berman, Judith mBio Research Article Knowing the full set of essential genes for a given organism provides important information about ways to promote, and to limit, its growth and survival. For many non-model organisms, the lack of a stable haploid state and low transformation efficiencies impede the use of conventional approaches to generate a genome-wide comprehensive set of mutant strains and the identification of the genes essential for growth. Here we report on the isolation and utilization of a highly stable haploid derivative of the human pathogenic fungus Candida albicans, together with a modified heterologous transposon and machine learning (ML) analysis method, to predict the degree to which all of the open reading frames are required for growth under standard laboratory conditions. We identified 1,610 C. albicans essential genes, including 1,195 with high “essentiality confidence” scores, thereby increasing the number of essential genes (currently 66 in the Candida Genome Database) by >20-fold and providing an unbiased approach to determine the degree of confidence in the determination of essentiality. Among the genes essential in C. albicans were 602 genes also essential in the model budding and fission yeasts analyzed by both deletion and transposon mutagenesis. We also identified essential genes conserved among the four major human pathogens C. albicans, Aspergillus fumigatus, Cryptococcus neoformans, and Histoplasma capsulatum and highlight those that lack homologs in humans and that thus could serve as potential targets for the design of antifungal therapies. American Society for Microbiology 2018-10-30 /pmc/articles/PMC6212825/ /pubmed/30377286 http://dx.doi.org/10.1128/mBio.02048-18 Text en Copyright © 2018 Segal et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Segal, Ella Shtifman
Gritsenko, Vladimir
Levitan, Anton
Yadav, Bhawna
Dror, Naama
Steenwyk, Jacob L.
Silberberg, Yael
Mielich, Kevin
Rokas, Antonis
Gow, Neil A. R.
Kunze, Reinhard
Sharan, Roded
Berman, Judith
Gene Essentiality Analyzed by In Vivo Transposon Mutagenesis and Machine Learning in a Stable Haploid Isolate of Candida albicans
title Gene Essentiality Analyzed by In Vivo Transposon Mutagenesis and Machine Learning in a Stable Haploid Isolate of Candida albicans
title_full Gene Essentiality Analyzed by In Vivo Transposon Mutagenesis and Machine Learning in a Stable Haploid Isolate of Candida albicans
title_fullStr Gene Essentiality Analyzed by In Vivo Transposon Mutagenesis and Machine Learning in a Stable Haploid Isolate of Candida albicans
title_full_unstemmed Gene Essentiality Analyzed by In Vivo Transposon Mutagenesis and Machine Learning in a Stable Haploid Isolate of Candida albicans
title_short Gene Essentiality Analyzed by In Vivo Transposon Mutagenesis and Machine Learning in a Stable Haploid Isolate of Candida albicans
title_sort gene essentiality analyzed by in vivo transposon mutagenesis and machine learning in a stable haploid isolate of candida albicans
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6212825/
https://www.ncbi.nlm.nih.gov/pubmed/30377286
http://dx.doi.org/10.1128/mBio.02048-18
work_keys_str_mv AT segalellashtifman geneessentialityanalyzedbyinvivotransposonmutagenesisandmachinelearninginastablehaploidisolateofcandidaalbicans
AT gritsenkovladimir geneessentialityanalyzedbyinvivotransposonmutagenesisandmachinelearninginastablehaploidisolateofcandidaalbicans
AT levitananton geneessentialityanalyzedbyinvivotransposonmutagenesisandmachinelearninginastablehaploidisolateofcandidaalbicans
AT yadavbhawna geneessentialityanalyzedbyinvivotransposonmutagenesisandmachinelearninginastablehaploidisolateofcandidaalbicans
AT drornaama geneessentialityanalyzedbyinvivotransposonmutagenesisandmachinelearninginastablehaploidisolateofcandidaalbicans
AT steenwykjacobl geneessentialityanalyzedbyinvivotransposonmutagenesisandmachinelearninginastablehaploidisolateofcandidaalbicans
AT silberbergyael geneessentialityanalyzedbyinvivotransposonmutagenesisandmachinelearninginastablehaploidisolateofcandidaalbicans
AT mielichkevin geneessentialityanalyzedbyinvivotransposonmutagenesisandmachinelearninginastablehaploidisolateofcandidaalbicans
AT rokasantonis geneessentialityanalyzedbyinvivotransposonmutagenesisandmachinelearninginastablehaploidisolateofcandidaalbicans
AT gowneilar geneessentialityanalyzedbyinvivotransposonmutagenesisandmachinelearninginastablehaploidisolateofcandidaalbicans
AT kunzereinhard geneessentialityanalyzedbyinvivotransposonmutagenesisandmachinelearninginastablehaploidisolateofcandidaalbicans
AT sharanroded geneessentialityanalyzedbyinvivotransposonmutagenesisandmachinelearninginastablehaploidisolateofcandidaalbicans
AT bermanjudith geneessentialityanalyzedbyinvivotransposonmutagenesisandmachinelearninginastablehaploidisolateofcandidaalbicans