Cargando…

Mechanistic insights into histone deposition and nucleosome assembly by the chromatin assembly factor-1

Eukaryotic chromatin is a highly dynamic structure with essential roles in virtually all DNA-dependent cellular processes. Nucleosomes are a barrier to DNA access, and during DNA replication, they are disassembled ahead of the replication machinery (the replisome) and reassembled following its passa...

Descripción completa

Detalles Bibliográficos
Autores principales: Sauer, Paul V, Gu, Yajie, Liu, Wallace H, Mattiroli, Francesca, Panne, Daniel, Luger, Karolin, Churchill, Mair EA
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6212844/
https://www.ncbi.nlm.nih.gov/pubmed/30239791
http://dx.doi.org/10.1093/nar/gky823
Descripción
Sumario:Eukaryotic chromatin is a highly dynamic structure with essential roles in virtually all DNA-dependent cellular processes. Nucleosomes are a barrier to DNA access, and during DNA replication, they are disassembled ahead of the replication machinery (the replisome) and reassembled following its passage. The Histone chaperone Chromatin Assembly Factor-1 (CAF-1) interacts with the replisome and deposits H3–H4 directly onto newly synthesized DNA. Therefore, CAF-1 is important for the establishment and propagation of chromatin structure. The molecular mechanism by which CAF-1 mediates H3–H4 deposition has remained unclear. However, recent studies have revealed new insights into the architecture and stoichiometry of the trimeric CAF-1 complex and how it interacts with and deposits H3–H4 onto substrate DNA. The CAF-1 trimer binds to a single H3–H4 dimer, which induces a conformational rearrangement in CAF-1 promoting its interaction with substrate DNA. Two CAF-1•H3–H4 complexes co-associate on nucleosome-free DNA depositing (H3–H4)(2) tetramers in the first step of nucleosome assembly. Here, we review the progress made in our understanding of CAF-1 structure, mechanism of action, and how CAF-1 contributes to chromatin dynamics during DNA replication.