Cargando…
Peniginsengins B–E, New Farnesylcyclohexenones from the Deep Sea-Derived Fungus Penicillium sp. YPGA11
Chemical examination of the EtOAc extract of the deep sea-derived fungus Penicillium sp. YPGA11 resulted in the isolation of four new farnesylcyclohexenones, peniginsengins B–E (1–4), and a known analog peniginsengin A (5). The structures of compounds 1–4 were determined on the basis of comprehensiv...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213461/ https://www.ncbi.nlm.nih.gov/pubmed/30275364 http://dx.doi.org/10.3390/md16100358 |
Sumario: | Chemical examination of the EtOAc extract of the deep sea-derived fungus Penicillium sp. YPGA11 resulted in the isolation of four new farnesylcyclohexenones, peniginsengins B–E (1–4), and a known analog peniginsengin A (5). The structures of compounds 1–4 were determined on the basis of comprehensive analyses of the nuclear magnetic resonance (NMR) and mass spectroscopy (MS) data, and the absolute configurations of 1, 2, and 4 were determined by comparisons of experimental electronic circular dichroism (ECD) with calculated ECD spectra. Compounds 1–5, characterized by a highly oxygenated 1-methylcyclohexene unit and a (4E,8E)-4,8-dimethyldeca-4,8-dienoic acid side chain, are rarely found in nature. Compounds 2–4 exhibited antibacterial activity against Staphylococcus aureus. |
---|