Cargando…

The Multifarious Functions of Pyruvate Kinase M2 in Oral Cancer Cells

Head and neck cancers, including oral squamous cell carcinoma (OSCC), are the sixth most common malignancies worldwide. OSCC frequently leads to oral dysfunction, which worsens a patient’s quality of life. Moreover, its prognosis remains poor. Unlike normal cells, tumor cells preferentially metaboli...

Descripción completa

Detalles Bibliográficos
Autores principales: Kurihara-Shimomura, Miyako, Sasahira, Tomonori, Nakashima, Chie, Kuniyasu, Hiroki, Shimomura, Hiroyuki, Kirita, Tadaaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213602/
https://www.ncbi.nlm.nih.gov/pubmed/30257458
http://dx.doi.org/10.3390/ijms19102907
Descripción
Sumario:Head and neck cancers, including oral squamous cell carcinoma (OSCC), are the sixth most common malignancies worldwide. OSCC frequently leads to oral dysfunction, which worsens a patient’s quality of life. Moreover, its prognosis remains poor. Unlike normal cells, tumor cells preferentially metabolize glucose by aerobic glycolysis. Pyruvate kinase (PK) catalyzes the final step in glycolysis, and the transition from PKM1 to PKM2 is observed in many cancer cells. However, little is known about PKM expression and function in OSCC. In this study, we investigated the expression of PKM in OSCC specimens and performed a functional analysis of human OSCC cells. We found that the PKM2/PKM1 ratio was higher in OSCC cells than in adjacent normal mucosal cells and in samples obtained from dysplasia patients. Furthermore, PKM2 expression was strongly correlated with OSCC tumor progression on immunohistochemistry. PKM2 expression was higher during cell growth, invasion, and apoptosis in HSC3 cells, which show a high energy flow and whose metabolism depends on aerobic glycolysis and oxidative phosphorylation. PKM2 expression was also associated with the production of reactive oxygen species (ROS) and integration of glutamine into lactate. Our results suggested that PKM2 has a variety of tumor progressive functions in OSCC cells.