Cargando…
Key Parameters to Promote Granularization of Lath-Like Bainite/Martensite in FeNiC Alloys during Isothermal Holding
The stability of lath-like microstructures during low-temperature isothermal ageing was analyzed in a Fe5Ni0.33C (in wt %) steel. The microstructures were characterized using Scanning Electron Microscopy (SEM) coupled with Electron Backscatter Diffraction (EBSD). Advanced orientation data processing...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213765/ https://www.ncbi.nlm.nih.gov/pubmed/30249989 http://dx.doi.org/10.3390/ma11101808 |
Sumario: | The stability of lath-like microstructures during low-temperature isothermal ageing was analyzed in a Fe5Ni0.33C (in wt %) steel. The microstructures were characterized using Scanning Electron Microscopy (SEM) coupled with Electron Backscatter Diffraction (EBSD). Advanced orientation data processing was applied to quantify the hierarchical and multiscale organization of crystallographic variants subdividing Prior Austenite Grains (PAG) into packets/blocks/sub-blocks. The result shows that ferrite laths of martensite or lower bainite are stable, whatever the ageing temperature (up to 380 °C). On the contrary, a granularization process is triggered when microstructures contain a fraction of upper bainite. This metallurgical evolution corresponds to a rapid and significant change of the ferrite matrix involving a disappearance of 60° disoriented blocks. The phenomenon affects in turn the mechanical properties. The final microstructures obtained after isothermal holding look like granular bainite, which raises some questions about the classification of bainite. |
---|