Cargando…
Investigating the Correspondence of Clinical Diagnostic Grouping With Underlying Neurobiological and Phenotypic Clusters Using Unsupervised Machine Learning
Many brain-based disorders are traditionally diagnosed based on clinical interviews and behavioral assessments, which are recognized to be largely imperfect. Therefore, it is necessary to establish neuroimaging-based biomarkers to improve diagnostic precision. Resting-state functional magnetic reson...
Autores principales: | Zhao, Xinyu, Rangaprakash, D., Yuan, Bowen, Denney, Thomas S., Katz, Jeffrey S., Dretsch, Michael N., Deshpande, Gopikrishna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214192/ https://www.ncbi.nlm.nih.gov/pubmed/30393630 |
Ejemplares similares
-
Identifying neuropsychiatric disorders using unsupervised clustering methods: Data and code
por: Zhao, Xinyu, et al.
Publicado: (2018) -
MALINI (Machine Learning in NeuroImaging): A MATLAB toolbox for aiding clinical diagnostics using resting-state fMRI data
por: Lanka, Pradyumna, et al.
Publicado: (2020) -
Dynamics of Segregation and Integration in Directional Brain Networks: Illustration in Soldiers With PTSD and Neurotrauma
por: Rangaprakash, D., et al.
Publicado: (2019) -
Hemodynamic response function parameters obtained from resting-state functional MRI data in soldiers with trauma
por: Rangaprakash, D., et al.
Publicado: (2017) -
Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies
por: Rangaprakash, D., et al.
Publicado: (2017)