Cargando…
Combined performance of screening and variable selection methods in ultra-high dimensional data in predicting time-to-event outcomes
BACKGROUND: Building prognostic models of clinical outcomes is an increasingly important research task and will remain a vital area in genomic medicine. Prognostic models of clinical outcomes are usually built and validated utilizing variable selection methods and machine learning tools. The challen...
Autores principales: | Pi, Lira, Halabi, Susan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214199/ https://www.ncbi.nlm.nih.gov/pubmed/30393771 http://dx.doi.org/10.1186/s41512-018-0043-4 |
Ejemplares similares
-
Ultra-high dimensional variable selection with application to normative aging study: DNA methylation and metabolic syndrome
por: Yoon, Grace, et al.
Publicado: (2017) -
Kernel based methods for accelerated failure time model with ultra-high dimensional data
por: Liu, Zhenqiu, et al.
Publicado: (2010) -
Stochastic variational variable selection for high-dimensional microbiome data
por: Dang, Tung, et al.
Publicado: (2022) -
High Dimensional Variable Selection with Error Control
por: Kim, Sangjin, et al.
Publicado: (2016) -
Ultrahigh-dimensional variable selection method for whole-genome gene-gene interaction analysis
por: Ueki, Masao, et al.
Publicado: (2012)