Cargando…
Multiplex flows in citation networks
Knowledge is created and transmitted through generations, and innovation is often seen as a process generated from collective intelligence. There is rising interest in studying how innovation emerges from the blending of accumulated knowledge, and from which path an innovation mostly inherits. A cit...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214274/ https://www.ncbi.nlm.nih.gov/pubmed/30443578 http://dx.doi.org/10.1007/s41109-017-0035-2 |
_version_ | 1783367954645123072 |
---|---|
author | Renoust, Benjamin Claver, Vivek Baffier, Jean-François |
author_facet | Renoust, Benjamin Claver, Vivek Baffier, Jean-François |
author_sort | Renoust, Benjamin |
collection | PubMed |
description | Knowledge is created and transmitted through generations, and innovation is often seen as a process generated from collective intelligence. There is rising interest in studying how innovation emerges from the blending of accumulated knowledge, and from which path an innovation mostly inherits. A citation network can be seen as a perfect example of one generative process leading to innovation. However, the impact and influence of scientific publication are always difficult to capture and measure. We offer a new take on investigating how the knowledge circulates and is transmitted, inspired by the notion of “stream of knowledge”. We propose to look at this question under the lens of flows in directed acyclic graphs (DAGs). In this framework inspired by the work of Strahler, we can also account for other well known measures of influence such as the h-index. We propose then to analyze flows of influence in a citation networks as an ascending flow. From this point on, we can take a finer look at the diffusion of knowledge through the lens of a multiplex network. In this network, each citation of a specific work constitutes one layer of interaction. Within our framework, we design three measures of multiplex flows in DAGs, namely the aggregated, sum and selective flow, to better understand how citations are influenced. We conduct our experiments with the arXiv HEP-Th dataset, and find insights through the visualization of these multiplex networks. |
format | Online Article Text |
id | pubmed-6214274 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-62142742018-11-13 Multiplex flows in citation networks Renoust, Benjamin Claver, Vivek Baffier, Jean-François Appl Netw Sci Research Knowledge is created and transmitted through generations, and innovation is often seen as a process generated from collective intelligence. There is rising interest in studying how innovation emerges from the blending of accumulated knowledge, and from which path an innovation mostly inherits. A citation network can be seen as a perfect example of one generative process leading to innovation. However, the impact and influence of scientific publication are always difficult to capture and measure. We offer a new take on investigating how the knowledge circulates and is transmitted, inspired by the notion of “stream of knowledge”. We propose to look at this question under the lens of flows in directed acyclic graphs (DAGs). In this framework inspired by the work of Strahler, we can also account for other well known measures of influence such as the h-index. We propose then to analyze flows of influence in a citation networks as an ascending flow. From this point on, we can take a finer look at the diffusion of knowledge through the lens of a multiplex network. In this network, each citation of a specific work constitutes one layer of interaction. Within our framework, we design three measures of multiplex flows in DAGs, namely the aggregated, sum and selective flow, to better understand how citations are influenced. We conduct our experiments with the arXiv HEP-Th dataset, and find insights through the visualization of these multiplex networks. Springer International Publishing 2017-07-18 2017 /pmc/articles/PMC6214274/ /pubmed/30443578 http://dx.doi.org/10.1007/s41109-017-0035-2 Text en © The Author(s) 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Renoust, Benjamin Claver, Vivek Baffier, Jean-François Multiplex flows in citation networks |
title | Multiplex flows in citation networks |
title_full | Multiplex flows in citation networks |
title_fullStr | Multiplex flows in citation networks |
title_full_unstemmed | Multiplex flows in citation networks |
title_short | Multiplex flows in citation networks |
title_sort | multiplex flows in citation networks |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214274/ https://www.ncbi.nlm.nih.gov/pubmed/30443578 http://dx.doi.org/10.1007/s41109-017-0035-2 |
work_keys_str_mv | AT renoustbenjamin multiplexflowsincitationnetworks AT clavervivek multiplexflowsincitationnetworks AT baffierjeanfrancois multiplexflowsincitationnetworks |