Cargando…
Geometric characterisation of disease modules
There is an increasing accumulation of evidence supporting the existence of a hyperbolic geometry underlying the network representation of complex systems. In particular, it has been shown that the latent geometry of the human protein network (hPIN) captures biologically relevant information, leadin...
Autores principales: | Härtner, Franziska, Andrade-Navarro, Miguel A., Alanis-Lobato, Gregorio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214295/ https://www.ncbi.nlm.nih.gov/pubmed/30839777 http://dx.doi.org/10.1007/s41109-018-0066-3 |
Ejemplares similares
-
Manifold learning and maximum likelihood estimation for hyperbolic network embedding
por: Alanis-Lobato, Gregorio, et al.
Publicado: (2016) -
The latent geometry of the human protein interaction network
por: Alanis-Lobato, Gregorio, et al.
Publicado: (2018) -
Efficient embedding of complex networks to hyperbolic space via their Laplacian
por: Alanis-Lobato, Gregorio, et al.
Publicado: (2016) -
HIPPIE v2.0: enhancing meaningfulness and reliability of protein–protein interaction networks
por: Alanis-Lobato, Gregorio, et al.
Publicado: (2017) -
Assessing the reliability of gene expression measurements in very-low-numbers of human monocyte-derived macrophages
por: Geiß, Carsten, et al.
Publicado: (2019)