Cargando…
Peritumoral radiomics features predict distant metastasis in locally advanced NSCLC
PURPOSE: Radiomics provides quantitative tissue heterogeneity profiling and is an exciting approach to developing imaging biomarkers in the context of precision medicine. Normal-appearing parenchymal tissues surrounding primary tumors can harbor microscopic disease that leads to increased risk of di...
Autores principales: | Dou, Tai H., Coroller, Thibaud P., van Griethuysen, Joost J. M., Mak, Raymond H., Aerts, Hugo J. W. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214508/ https://www.ncbi.nlm.nih.gov/pubmed/30388114 http://dx.doi.org/10.1371/journal.pone.0206108 |
Ejemplares similares
-
Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study
por: Hosny, Ahmed, et al.
Publicado: (2018) -
Repeatability of Multiparametric Prostate MRI Radiomics Features
por: Schwier, Michael, et al.
Publicado: (2019) -
Associations of Radiomic Data Extracted from Static and Respiratory-Gated CT Scans with Disease Recurrence in Lung Cancer Patients Treated with SBRT
por: Huynh, Elizabeth, et al.
Publicado: (2017) -
Lymph node volume predicts survival but not nodal clearance in Stage IIIA-IIIB NSCLC
por: Agrawal, Vishesh, et al.
Publicado: (2017) -
Diagnosis of Distant Metastasis of Lung Cancer: Based on Clinical and Radiomic Features
por: Zhou, Hongyu, et al.
Publicado: (2017)