Cargando…

Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices

With accelerating trends in miniaturization of semiconductor devices, techniques for energy harvesting become increasingly important, especially in wearable technologies and sensors for the internet of things. Although thermoelectric systems have many attractive attributes in this context, maintaini...

Descripción completa

Detalles Bibliográficos
Autores principales: Nan, Kewang, Kang, Stephen Dongmin, Li, Kan, Yu, Ki Jun, Zhu, Feng, Wang, Juntong, Dunn, Alison C., Zhou, Chaoqun, Xie, Zhaoqian, Agne, Matthias T., Wang, Heling, Luan, Haiwen, Zhang, Yihui, Huang, Yonggang, Snyder, G. Jeffrey, Rogers, John A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214638/
https://www.ncbi.nlm.nih.gov/pubmed/30406207
http://dx.doi.org/10.1126/sciadv.aau5849
Descripción
Sumario:With accelerating trends in miniaturization of semiconductor devices, techniques for energy harvesting become increasingly important, especially in wearable technologies and sensors for the internet of things. Although thermoelectric systems have many attractive attributes in this context, maintaining large temperature differences across the device terminals and achieving low–thermal impedance interfaces to the surrounding environment become increasingly difficult to achieve as the characteristic dimensions decrease. Here, we propose and demonstrate an architectural solution to this problem, where thin-film active materials integrate into compliant, open three-dimensional (3D) forms. This approach not only enables efficient thermal impedance matching but also multiplies the heat flow through the harvester, thereby increasing the efficiencies for power conversion. Interconnected arrays of 3D thermoelectric coils built using microscale ribbons of monocrystalline silicon as the active material demonstrate these concepts. Quantitative measurements and simulations establish the basic operating principles and the key design features. The results suggest a scalable strategy for deploying hard thermoelectric thin-film materials in harvesters that can integrate effectively with soft materials systems, including those of the human body.